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CHAPTER 2 
 

THE MATHEMATICS OF OPTIMIZATION 

 
The problems in this chapter are primarily mathematical.  They are intended to give students some practice 

with taking derivatives and using the Lagrangian techniques, but the problems in themselves offer few 

economic insights.  Consequently, no commentary is provided. All of the problems are relatively simple 

and instructors might choose from among them on the basis of how they wish to approach the teaching of 

the optimization methods in class. 

 

 

Solutions 
 

2.1 2 2( , ) 4 3 U x y x y  

a. 8 6
 

 

 U  U
 = x ,      = y

 x  y
 

b. 8, 12 

c.  8 6
 


 

 U  U
dU   dx +   dy = x  dx + y  dy

 x  y
 

d. for   0     8     6     0  
dy

 dU x dx y dy
dx

 

8 4

6 3

 dy x x
 =  = 

dx y y
 

e. 1, 2 4 1 3 4 16      x       y       U         

f. 
4(1)

2 / 3
3(2)


  

dy
     

dx
 

g. U = 16 contour line is an ellipse centered at the origin.  With equation 

2 24 3 16 x y , slope of the line at (x, y) is 
4

3
 

dy x
  

dx y
. 

 

2.2 a. Profits are given by 22 40 100      R C q q  

*
4 40 10


   

d
  q         q

dq
 

2* 2(10 40(10) 100 100)              

b. 
2

2
4


 

d
  

dq
 so profits are maximized 

c. 70 2  
dR

MR      q
dq
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2 30  
dC

MC    q  
dq

 

so q* = 10 obeys MR = MC = 50. 

 

2.3 Substitution: 21    so       y x f xy x x  

1 2 0


  


f
    x  

x
 

0.5 0.5, 0.25x = , y =  f  =   

 

Note: 2 0   f .  This is a local and global maximum. 

Lagrangian Method: ? 1 )   xy x y  

 

£







 
 = y   = 0

x
 

 

£







 
 = x  = 0

y
 

 

so, x = y. 

using the constraint gives 0.5, 0.25  x y xy  

 

2.4 Setting up the Lagrangian:  ? 0.25 )   x y xy . 

  

£
1

£
1






 




 



y
x

x
y

 

  So, x = y.  Using the constraint gives 2 0.25, 0.5   xy x x y . 

 

2.5 a.   2( ) 0.5 40  f t gt t  

 * 40
40 0,    

df
  g t    t

dt g
  . 

b. Substituting for t*,  
* 2( ) 0.5 (40 ) 40(40 ) 800   f t g g g g . 

 
*

2( )
800


 



f t
g

g
. 

c.   
2*1

( )
2


 



f
   t

g
 depends on g because t

*
 depends on g. 

so * 2 2

2

40 800
0.5( ) 0.5( )

 
    



f
  t

g g g
. 
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 d.    800 32 25, 800 32.1 24.92  , a reduction of .08.  Notice that 
2 2800 800 32 0.8   g  so a 0.1 increase in g could be predicted to reduce 

height by 0.08 from the envelope theorem. 

 

2.6 a. This is the volume of a rectangular solid made from a piece of metal which is x by 3x 

with the defined corner squares removed. 

b.  
2 23 16 12 0


   



V
x xt t

t
.  Applying the quadratic formula to this expression yields 

2 216 256 144 16 10.6
0.225 , 1.11

24 24

  
  

x x x x x
t x x .  To determine true 

maximum must look at second derivative -- 
2

2
16 24


  



V
x t

t
 which is negative only 

for the first solution. 

c. If 3 3 3 30.225 , 0.67 .04 .05 0.68    t x V x x x x  so V increases without limit. 

d. This would require a solution using the Lagrangian method.  The optimal solution 

requires solving three non-linear simultaneous equations—a task not undertaken here. 

But it seems clear that the solution would involve a different relationship between t and 

x than in parts a-c. 

 

2.7 a.  Set up Lagrangian 1 2 1 2? ln ( )    x x k x x  yields the first order conditions:  

1

2 2

1 2

£
1 0

?
0

£
0








  




  




   



x

x x

k x x

 

 Hence, 2 21 5   or  5   x x .  With k = 10, optimal solution is 1 2 5. x x  

b. With k = 4, solving the first order conditions yields 2 15, 1.  x x  

c. Optimal solution is 1 20, 4, 5ln 4.  x x y  Any positive value for x1 reduces y. 

d.   If k = 20, optimal solution is 1 215, 5. x x  Because x2 provides a diminishing 

marginal increment to y whereas x1 does not, all optimal solutions require that, once x2 

reaches 5, any extra amounts be devoted entirely to x1.  

 

2.8 The proof is most easily accomplished through the use of the matrix algebra of quadratic 

forms.  See, for example, Mas Colell et al., pp. 937–939.  Intuitively, because concave 

functions lie below any tangent plane, their level curves must also be convex.  But the 

converse is not true.  Quasi-concave functions may exhibit ―increasing returns to scale‖; 

even though their level curves are convex, they may rise above the tangent plane when all 

variables are increased together. 
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2.9 a. 1
1 21 0.    f     x x  

1
1 22 0    f     .x x  

 
2

1 111 ( 1) 0.     f            x x  

 

   
2

1 222 ( 1) 0.        f            x x  

 
11

1 212 21 0.          f f      x x  

 

Clearly, all the terms in Equation 2.114 are negative. 

b. If 1 2
 y  c    x x  

/1/
2 1

      x c x  since α, β > 0, x2 is a convex function of x1 . 

c. Using equation 2.98, 
2 22 2 2 22 2 2 2 2

1 12 211 1222
( 1) ( ) ( 1)       

                                                 f f f x x x x  

= 2 22 2
1 2(1 )                           x x  which is negative for α + β > 1. 

 

2.10 a. Since 0, 0  y y , the function is concave. 

b. Because 11 22, 0f f , and 12 21 0 f f , Equation 2.98 is satisfied and the function 

is concave. 

c. y is quasi-concave as is 


y .  But 


y  is not concave for γ > 1.  All of these results 

can be shown by applying the various definitions to the partial derivatives of y. 
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CHAPTER 3 

 
PREFERENCES AND UTILITY 

 
These problems provide some practice in examining utility functions by looking at indifference 

curve maps.  The primary focus is on illustrating the notion of a diminishing MRS in various 

contexts.  The concepts of the budget constraint and utility maximization are not used until the next 

chapter. 

 

Comments on Problems 

 

3.1 This problem requires students to graph indifference curves for a variety of functions, 

some of which do not exhibit a diminishing MRS. 

3.2 Introduces the formal definition of quasi-concavity (from Chapter 2) to be applied to the 

functions in Problem 3.1. 

3.3 This problem shows that diminishing marginal utility is not required to obtain a 

diminishing MRS. All of the functions are monotonic transformations of one another, so 

this problem illustrates that diminishing MRS is preserved by monotonic transformations, 

but diminishing marginal utility is not. 

3.4 This problem focuses on whether some simple utility functions exhibit convex 

indifference curves. 

3.5 This problem is an exploration of the fixed-proportions utility function.  The problem also 

shows how such problems can be treated as a composite commodity. 

3.6 In this problem students are asked to provide a formal, utility-based explanation for a 

variety of advertising slogans.  The purpose is to get students to think mathematically 

about everyday expressions. 

3.7 This problem shows how initial endowments can be incorporated into utility theory. 

3.8 This problem offers a further exploration of the Cobb-Douglas function.  Part c provides 

an introduction to the linear expenditure system.  This application is treated in more detail 

in the Extensions to Chapter 4. 

3.9 This problem shows that independent marginal utilities illustrate one situation in which 

diminishing marginal utility ensures a diminishing MRS. 

3.10 This problem explores various features of the CES function with weighting on the two 

goods. 
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Solutions 
 

3.1 Here we calculate the MRS for each of these functions: 

 a.  3 1 x yMRS f f  — MRS is constant. 

 b.  
0.5

0.5

0.5( )

0.5( )
  x y

y x
MRS f f y x

y x
  — MRS is diminishing. 

 c.  0.50.5 1 x yMRS f f x   —  MRS is diminishing 

d.  2 2 0.5 2 2 0.50.5( ) 2 0.5( ) 2       x yMRS f f x y x x y y x y  — MRS is increasing.  

e.   2 2

2 2

( ) ( )

( ) ( )

   
  

 
x y

x y y xy x y x xy
MRS f f y x

x y x y
 — MRS is diminishing.  

3.2 Because all of the first order partials are positive, we must only check the second order 

partials. 

 a. 11 22 2 0  f f f      Not strictly quasiconcave. 

 b. 11 22 12, 0, 0 f f f      Strictly quasiconcave 

 c. 11 22 120, 0, 0  f f f   Strictly quasiconcave 

 d. Even if we only consider cases where x y , both of the own second order partials are 

ambiguous and therefore the function is not necessarily strictly quasiconcave. 

 e. 11 22 12, 0 0 f f f   Strictly quasiconcave. 

 

3.3 a. , 0, , 0,    x xx y yyU y U U x U MRS y x . 

 b. 2 2 2 22 , 2 , 2 , 2 ,    x xx y yyU xy U y U x y U x MRS y x . 

 c. 2 21 , 1 , 1 , 1 ,      x xx y yyU x U x U y U y MRS y x  

This shows that monotonic transformations may affect diminishing marginal utility, but not 

the MRS. 

 

3.4 a. The case where the same good is limiting is uninteresting because 

1 1 1 2 2 2 1 2 1 2 1 2( , ) ( , ) [( ) 2, ( ) 2] ( ) 2        U x y x k U x y x U x x y y x x .  If the 

limiting goods differ, then 1 1 2 2.  y x k y x     Hence, 

1 2 1 2( ) / 2  and ( ) / 2x x k y y k    so the indifference curve is convex. 



Chapter 3/Preference and Utility    7 

 b. Again, the case where the same good is maximum is uninteresting.  If the goods differ, 

1 1 2 2 1 2 1 2. ( ) / 2 , ( ) / 2       y x k y x x x k y y k  so the indifference curve is 

concave, not convex. 

 c. Here 1 1 2 2 1 2 1 2( ) ( ) [( ) / 2, ( ) / 2]      x y k x y x x y y  so indifference curve is 

neither convex or concave – it is linear. 

 
 

3.5 a.  ( , , , ) ( ,2 , ,0.5 )U h b m r Min h b m r . 

b.  A fully condimented hot dog. 

c.  $1.60 

d.  $2.10 – an increase of 31 percent. 

e.  Price would increase only to $1.725 – an increase of 7.8 percent. 

 f.  Raise prices so that a fully condimented hot dog rises in price to $2.60.  This would be 

equivalent to a lump-sum reduction in purchasing power. 

 

3.6 a.  ( , )  U p b p b  

 b.  
2

0.



 

U

x coke
 

 c.  ( , ) (1, )U p x U x  for p > 1 and all x. 

 d.  ( , ) ( , )U k x U d x  for k = d. 

 e.  See the extensions to Chapter 3. 
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3.7 a.   

 
 

 b.  Any trading opportunities that differ from the MRS at ,x y  will provide the opportunity 

to raise utility (see figure). 

 c.  A preference for the initial endowment will require that trading opportunities raise 

utility substantially.  This will be more likely if the trading opportunities and 

significantly different from the initial MRS (see figure). 

 

3.8 a. 
1

1

/
( / )

/





 







 
  
 

U x x y
MRS        y x

U y x  y
 

This result does not depend on the sum α + β which, contrary to production theory, has 

no significance in consumer theory because utility is unique only up to a monotonic 

transformation. 

 b.  Mathematics follows directly from part a.  If α > β the individual values x relatively more 

highly; hence, 1dy dx  for x = y. 

 c.  The function is homothetic in 0( )x  x  and 0( )y  y , but not in x and y. 

 

3.9 From problem 3.2, 12 0f  implies diminishing MRS providing 11 22, 0f f . 

Conversely, the Cobb-Douglas has 12 11 220, , 0 f f f , but also has a diminishing MRS 

(see problem 3.8a). 

 

3.10 a.  
1

1

1

/
( / )

/






 








 
  
 

U x x
MRS        y x

U y y
 so this function is homothetic. 

 b. If δ = 1, MRS = α/β, a constant.  

If δ = 0, MRS = α/β (y/x), which agrees with Problem 3.8. 

 c. For δ < 1 1 – δ > 0, so MRS diminishes. 

 d. Follows from part a, if x = y MRS = α/β. 
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 e. With 0.5.5, (.9) (.9) .949
 


 

     MRS        

 0.5(1.1) (1.1) 1.05
 

 
 MRS           

 With 21, (.9) (.9) .81
 


 

      MRS         

 2(1.1) (1.1) 1.21
 

 
 MRS         

 Hence, the MRS changes more dramatically when δ = –1 than when δ = .5; the lower δ 

is, the more sharply curved are the indifference curves. When    , the indifference 

curves are L-shaped implying fixed proportions. 
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CHAPTER 3 

 
PREFERENCES AND UTILITY 

 
These problems provide some practice in examining utility functions by looking at indifference 

curve maps.  The primary focus is on illustrating the notion of a diminishing MRS in various 

contexts.  The concepts of the budget constraint and utility maximization are not used until the next 

chapter. 

 

Comments on Problems 

 

3.1 This problem requires students to graph indifference curves for a variety of functions, 

some of which do not exhibit a diminishing MRS. 

3.2 Introduces the formal definition of quasi-concavity (from Chapter 2) to be applied to the 

functions in Problem 3.1. 

3.3 This problem shows that diminishing marginal utility is not required to obtain a 

diminishing MRS. All of the functions are monotonic transformations of one another, so 

this problem illustrates that diminishing MRS is preserved by monotonic transformations, 

but diminishing marginal utility is not. 

3.4 This problem focuses on whether some simple utility functions exhibit convex 

indifference curves. 

3.5 This problem is an exploration of the fixed-proportions utility function.  The problem also 

shows how such problems can be treated as a composite commodity. 

3.6 In this problem students are asked to provide a formal, utility-based explanation for a 

variety of advertising slogans.  The purpose is to get students to think mathematically 

about everyday expressions. 

3.7 This problem shows how initial endowments can be incorporated into utility theory. 

3.8 This problem offers a further exploration of the Cobb-Douglas function.  Part c provides 

an introduction to the linear expenditure system.  This application is treated in more detail 

in the Extensions to Chapter 4. 

3.9 This problem shows that independent marginal utilities illustrate one situation in which 

diminishing marginal utility ensures a diminishing MRS. 

3.10 This problem explores various features of the CES function with weighting on the two 

goods. 
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Solutions 
 

3.1 Here we calculate the MRS for each of these functions: 

 a.  3 1 x yMRS f f  — MRS is constant. 

 b.  
0.5

0.5

0.5( )

0.5( )
  x y

y x
MRS f f y x

y x
  — MRS is diminishing. 

 c.  0.50.5 1 x yMRS f f x   —  MRS is diminishing 

d.  2 2 0.5 2 2 0.50.5( ) 2 0.5( ) 2       x yMRS f f x y x x y y x y  — MRS is increasing.  

e.   2 2

2 2

( ) ( )

( ) ( )

   
  

 
x y

x y y xy x y x xy
MRS f f y x

x y x y
 — MRS is diminishing.  

3.2 Because all of the first order partials are positive, we must only check the second order 

partials. 

 a. 11 22 2 0  f f f      Not strictly quasiconcave. 

 b. 11 22 12, 0, 0 f f f      Strictly quasiconcave 

 c. 11 22 120, 0, 0  f f f   Strictly quasiconcave 

 d. Even if we only consider cases where x y , both of the own second order partials are 

ambiguous and therefore the function is not necessarily strictly quasiconcave. 

 e. 11 22 12, 0 0 f f f   Strictly quasiconcave. 

 

3.3 a. , 0, , 0,    x xx y yyU y U U x U MRS y x . 

 b. 2 2 2 22 , 2 , 2 , 2 ,    x xx y yyU xy U y U x y U x MRS y x . 

 c. 2 21 , 1 , 1 , 1 ,      x xx y yyU x U x U y U y MRS y x  

This shows that monotonic transformations may affect diminishing marginal utility, but not 

the MRS. 

 

3.4 a. The case where the same good is limiting is uninteresting because 

1 1 1 2 2 2 1 2 1 2 1 2( , ) ( , ) [( ) 2, ( ) 2] ( ) 2        U x y x k U x y x U x x y y x x .  If the 

limiting goods differ, then 1 1 2 2.  y x k y x     Hence, 

1 2 1 2( ) / 2  and ( ) / 2x x k y y k    so the indifference curve is convex. 
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 b. Again, the case where the same good is maximum is uninteresting.  If the goods differ, 

1 1 2 2 1 2 1 2. ( ) / 2 , ( ) / 2       y x k y x x x k y y k  so the indifference curve is 

concave, not convex. 

 c. Here 1 1 2 2 1 2 1 2( ) ( ) [( ) / 2, ( ) / 2]      x y k x y x x y y  so indifference curve is 

neither convex or concave – it is linear. 

 
 

3.5 a.  ( , , , ) ( ,2 , ,0.5 )U h b m r Min h b m r . 

b.  A fully condimented hot dog. 

c.  $1.60 

d.  $2.10 – an increase of 31 percent. 

e.  Price would increase only to $1.725 – an increase of 7.8 percent. 

 f.  Raise prices so that a fully condimented hot dog rises in price to $2.60.  This would be 

equivalent to a lump-sum reduction in purchasing power. 

 

3.6 a.  ( , )  U p b p b  

 b.  
2

0.



 

U

x coke
 

 c.  ( , ) (1, )U p x U x  for p > 1 and all x. 

 d.  ( , ) ( , )U k x U d x  for k = d. 

 e.  See the extensions to Chapter 3. 
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3.7 a.   

 
 

 b.  Any trading opportunities that differ from the MRS at ,x y  will provide the opportunity 

to raise utility (see figure). 

 c.  A preference for the initial endowment will require that trading opportunities raise 

utility substantially.  This will be more likely if the trading opportunities and 

significantly different from the initial MRS (see figure). 

 

3.8 a. 
1

1

/
( / )

/





 







 
  
 

U x x y
MRS        y x

U y x  y
 

This result does not depend on the sum α + β which, contrary to production theory, has 

no significance in consumer theory because utility is unique only up to a monotonic 

transformation. 

 b.  Mathematics follows directly from part a.  If α > β the individual values x relatively more 

highly; hence, 1dy dx  for x = y. 

 c.  The function is homothetic in 0( )x  x  and 0( )y  y , but not in x and y. 

 

3.9 From problem 3.2, 12 0f  implies diminishing MRS providing 11 22, 0f f . 

Conversely, the Cobb-Douglas has 12 11 220, , 0 f f f , but also has a diminishing MRS 

(see problem 3.8a). 

 

3.10 a.  
1

1

1

/
( / )

/






 








 
  
 

U x x
MRS        y x

U y y
 so this function is homothetic. 

 b. If δ = 1, MRS = α/β, a constant.  

If δ = 0, MRS = α/β (y/x), which agrees with Problem 3.8. 

 c. For δ < 1 1 – δ > 0, so MRS diminishes. 

 d. Follows from part a, if x = y MRS = α/β. 
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 e. With 0.5.5, (.9) (.9) .949
 


 

     MRS        

 0.5(1.1) (1.1) 1.05
 

 
 MRS           

 With 21, (.9) (.9) .81
 


 

      MRS         

 2(1.1) (1.1) 1.21
 

 
 MRS         

 Hence, the MRS changes more dramatically when δ = –1 than when δ = .5; the lower δ 

is, the more sharply curved are the indifference curves. When    , the indifference 

curves are L-shaped implying fixed proportions. 
 



10 

CHAPTER 4  
 

UTILITY MAXIMIZATION AND CHOICE  
 
The problems in this chapter focus mainly on the utility maximization assumption. Relatively 

simple computational problems (mainly based on Cobb–Douglas and CES utility functions) are 

included. Comparative statics exercises are included in a few problems, but for the most part, 

introduction of this material is delayed until Chapters 5 and 6.  

 

Comments on Problems  

 

4.1 This is a simple Cobb–Douglas example. Part (b) asks students to compute income 

compensation for a price rise and may prove difficult for them. As a hint they might be 

told to find the correct bundle on the original indifference curve first, then compute its 

cost.  

 

4.2 This uses the Cobb-Douglas utility function to solve for quantity demanded at two 

different prices. Instructors may wish to introduce the expenditure shares interpretation of 

the function's exponents (these are covered extensively in the Extensions to Chapter 4 

and in a variety of numerical examples in Chapter 5).  

 

4.3 This starts as an unconstrained maximization problem—there is no income constraint in 

part (a) on the assumption that this constraint is not limiting. In part (b) there is a total 

quantity constraint. Students should be asked to interpret what Lagrangian Multiplier 

means in this case.  

 

4.4 This problem shows that with concave indifference curves first order conditions do not 

ensure a local maximum.  

 

4.5 This is an example of a ―fixed proportion‖ utility function. The problem might be used to 

illustrate the notion of perfect complements and the absence of relative price effects for 

them. Students may need some help with the min ( ) functional notation by using 

illustrative numerical values for v and g and showing what it means to have ―excess‖ v or 

g.  

 

4.6 This problem introduces a third good for which optimal consumption is zero until income 

reaches a certain level.  

 

4.7 This problem provides more practice with the Cobb-Douglas function by asking students 

to compute the indirect utility function and expenditure function in this case. The 

manipulations here are often quite difficult for students, primarily because they do not 

keep an eye on what the final goal is.  

 

4.8 This problem repeats the lessons of the lump sum principle for the case of a subsidy. 

Numerical examples are based on the Cobb-Douglas expenditure function.  
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4.9 This problem looks in detail at the first order conditions for a utility maximum with the 

CES function. Part c of the problem focuses on how relative expenditure shares are 

determined with the CES function.  

 

4.10 This problem shows utility maximization in the linear expenditure system (see also the 

Extensions to Chapter 4).  

 

 

Solutions 
 

4.1 a. Set up Lagrangian  

? 1.00 .10 .25 )ts    t s  .     

0.5

0.5

£
( / ) .10

£
( / ) .25

s t
t

t s
s






 




 



 

£
1.00 .10 .25 0

 
   t  s  




   


 

Ratio of first two equations implies 

 2.5 2.5
t
       t  s

s
   

Hence 

 1.00 = .10t + .25s = .50s. 

 s = 2   t = 5 

Utility = 10  

b. New utility 10  or ts = 10 

and 
.25 5

.40 8

t
    

s
   

5

8

s
t    

Substituting into indifference curve: 

25
10

8

s
    

s
2
 = 16   s = 4   t = 2.5 

Cost of this bundle is 2.00, so Paul needs another dollar.  
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4.2 Use a simpler notation for this solution: 
2/3 1/3( , ) 300U f c         I  f c    

 a. 
2/3 1/3? 300 20 4 )      f   cf c      

1/3

2/3

£
2 / 3( / ) 20

£
1/ 3( / ) 4

c f
f

f c
c






 




 



 

 Hence, 

  5 2 , 2 5
c

      c  f
f

   

  Substitution into budget constraint yields f = 10, c = 25. 

 b. With the new constraint: f = 20, c = 25  

  Note: This person always spends 2/3 of income on f and 1/3 on c. Consumption of 

California wine does not change when price of French wine changes.  

 c. In part a, 2 3 1 3 2 3 1 3( , ) 10 25 13.5U f c f c   . In part b, 2 3 1 3( , ) 20 25 21.5U f c   . 

To achieve the part b utility with part a prices, this person will need more income. 

Indirect utility is 2 3 1 3 2 3 1 3 2 3 2 3 1 321.5 (2 3) (1 3) (2 3) 20 4f cIp p I     . Solving this 

equation for the required income gives I = 482. With such an income, this person 

would purchase f = 16.1, c = 40.1, U = 21.5.  

 

4.3 2 2( , ) 20 18 3U c b c c b b     

 a. 
U

 = 20 2c = 0,     c = 10
c





 | 

  
U

 = 18  6b = 0,     b = 3
b





  

  So, U = 127. 

 b. Constraint: b + c = 5 

   2 2? 0 18 3 (5 )c c b b c b        

  
£ 

 = 20 2c   = 0
c




 


 

  
£

 = 18  6b  = 0
b




 


 

  
£

5
 
 = c b = 0




 


 

  c = 3b + 1 so b + 3b + 1 = 5, b = 1, c = 4, U = 79  
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4.4  2 2 0.5( , ) ( )U x y x y   

 Maximizing U
2
 in will also maximize U. 

 a. 2 2? 50 3 4 )x y x y       

  
£

2 3 = 2x 3  = 0      = x
x

 





  

  
£

2 = 2y  4  = 0      = y
y

 





 

  
£

50 0 = 3x  4y    



  


  

  First two equations give 4 3y x . Substituting in budget constraint gives  x = 6,  

y = 8 , U = 10.  

 b. This is not a local maximum because the indifference curves do not have a 

diminishing MRS (they are in fact concentric circles). Hence, we have necessary but 

not sufficient conditions for a maximum. In fact the calculated allocation is a 

minimum utility. If Mr. Ball spends all income on x, say, U = 50/3.  

 

4.5 ( ) ( , ) [ 2, ]U m U g v Min g v   

 a. No matter what the relative price are (i.e., the slope of the budget constraint) the 

maximum utility intersection will always be at the vertex of an indifference curve 

where g = 2v.   

 b. Substituting g = 2v into the budget constraint yields:   

  2 g vp v p v I   or 
g v

I
v = 

2p  + p
 . 

  Similarly, 
g v

2I
g = 

2p  + p
  

  It is easy to show that these two demand functions are homogeneous of degree zero in 

PG , PV , and I.  

 c. 2U g v   so,  

  Indirect Utility is ( , , )g v

g v

I
V p p I

2p  + p
   

 d. The expenditure function is found by interchanging I (= E) and V, 

( , , ) (2 )g v g vE p p V p p V  .  
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4.6 a. If x = 4 y = 1 U (z = 0) = 2. 

  If z = 1 U = 0 since x = y = 0. 

  If z = 0.1 (say) x = .9/.25 = 3.6, y = .9. 

  U = (3.6)
.5

 (.9)
.5

 (1.1)
.5

 = 1.89 – which is less than U(z = 0)  

 b. At x = 4 y = 1 z =0  

  x yx y
M   /  = M   /  = 1p pU U   

  z z
M   /  = 1/2pU   

  So, even at z = 0, the marginal utility from z is "not worth" the good's price. Notice 

here that the ―1‖ in the utility function causes this individual to incur some 

diminishing marginal utility for z before any is bought. Good z illustrates the principle 

of ―complementary slackness discussed in Chapter 2.  

 c. If I = 10, optimal choices are x = 16, y = 4, z = 1. A higher income makes it possible 

to consume z as part of a utility maximum. To find the minimal income at which any 

(fractional) z would be bought, use the fact that with the Cobb-Douglas this person 

will spend equal amounts on x, y, and (1+z). That is:  

  (1 )x y zp x p y p z     

  Substituting this into the budget constraint yields:  

  2 (1 ) 3 2z z z zp z p z I or p z I p       

  Hence, for z > 0 it must be the case that 2   or  4zI p I  .  

 

4.7 1( , )U x y x y    

 a.  The demand functions in this case are , (1 )x yx I p y I p    . Substituting these 

into the utility function gives (1 )( , , ) [ ] [(1 ) ]x y x y x yV p p I I p I p BIp p          

where (1 )(1 )B      .  

 b.  Interchanging I and V yields 1 (1 )( , , )x y x yE p p V B p p V   .  

 c.  The elasticity of expenditures with respect to xp  is given by the exponent  . That is, 

the more important x is in the utility function the greater the proportion that 

expenditures must be increased to compensate for a proportional rise in the price of x.  
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4.8 a.  

 b. 0.5 0.5( , , ) 2x y x yE p p U p p U . With 1, 4, 2, 8x yp p U E    . To raise utility to 3 

would require E = 12 – that is, an income subsidy of 4.  

 c. Now we require 0.5 0.5 0.58 2 4 3  or 8 12 2 3x xE p p    . So 4 9xp   -- that is, each 

unit must be subsidized by 5/9. at the subsidized price this person chooses to buy x = 

9. So total subsidy is 5 – one dollar greater than in part c.  

 d. 0.3 0.7( , , ) 1.84x y x yE p p U p p U . With 1, 4, 2, 9.71x yp p U E    . Raising U to 3 

would require extra expenditures of 4.86. Subsidizing good x alone would require a 

price of 0.26xp  . That is, a subsidy of 0.74 per unit. With this low price, this person 

would choose x = 11.2, so total subsidy would be 8.29.  

 

4.9 a.  
1

( ) x y

U/ x
MRS =  = x y  = p /p

U/ y

  

 
 for utility maximization.  

  Hence, 1 ( 1)( ) ( )    where  1 (1 )x y x yx/y = p p p p       .  

 b. If δ = 0,    so   y x x yx y p p p x p y  .  

 c. Part a shows 1( )x y x y
p x p y  p p     

  Hence, for 1   the relative share of income devoted to good x is positively 

correlated with its relative price. This is a sign of low substitutability. For 1   the 

relative share of income devoted to good x is negatively correlated with its relative 

price – a sign of high substitutability.   

 d. The algebra here is very messy. For a solution see the Sydsaeter, Strom, and Berck 

reference at the end of Chapter 5.  

 

4.10 a. For x < x0 utility is negative so will spend px x0 first. With I- px x0 extra income, this is 

a standard Cobb-Douglas problem:  

  0 0 0( ) ( ), ( )x x y xp x x  =  I  p x p y I p x       



16    Solutions Manual 

 b. Calculating budget shares from part a yields  

  0 0( )
,

yx x x
p yxp 1  p x p x

 =  + 
I I I I

 
 


    

   lim( ) , lim( )
yx

p yxp
I  I

I I
     . 
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CHAPTER 5  
 

INCOME AND SUBSTITUTION EFFECTS  
 

Problems in this chapter focus on comparative statics analyses of income and own-price changes. 

Many of the problems are fairly easy so that students can approach the ideas involved in shifting 

budget constraints in simplified settings. Theoretical material is confined mainly to the 

Extensions where Shephard's Lemma and Roy’s Identity are illustrated for the Cobb-Douglas 

case.  

 

Comments on Problems  

 

5.1 An example of perfect substitutes.  

 

5.2 A fixed-proportions example. Illustrates how the goods used in fixed proportions (peanut 

butter and jelly) can be treated as a single good in the comparative statics of utility 

maximization.  

 

5.3 An exploration of the notion of homothetic functions. This problem shows that Giffen's 

Paradox cannot occur with homothetic functions.  

 

5.4 This problem asks students to pursue the analysis of Example 5.1 to obtain compensated 

demand functions. The analysis essentially duplicates Examples 5.3 and 5.4.  

 

5.5 Another utility maximization example. In this case, utility is not separable and cross-price 

effects are important.  

 

5.6 This is a problem focusing on “share elasticities”. It shows that more customary 

elasticities can often be calculated from share elasticities—this is important in empirical 

work where share elasticities are often used.  

 

5.7 This is a problem with no substitution effects. It shows how price elasticities are 

determined only by income effects which in turn depend on income shares.  

 

 

5.8 This problem illustrates a few simple cases where elasticities are directly related to 

parameters of the utility function.  

 

5.9 This problem shows how the aggregation relationships described in Chapter 5 for the 

case of two goods can be generalized to many goods.  

  

5.10 A revealed preference example of inconsistent preferences.  
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Solutions  
 

5.1 a. Utility = Quantity of water = .75x + 2y. 

 b. If 
3

, 0.
8

xx y
 <        x = I p yp p    

  If 
3

0, .
8

yx

y

I
 >  p      x = yp

p
   

 c.   

 d. Increases in I shifts demand for x outward. Reductions in py do not affect demand for 

x until 
8

3

x

y

p
 <  .p  Then demand for x falls to zero. 

 e. The income-compensated demand curve for good x is the single x, px point that 

characterizes current consumption. Any change in px would change utility from this 

point (assuming x > 0).  

 

5.2 a. Utility maximization requires pb = 2j and the budget constraint is .05pb +.1j = 3. 

Substitution gives pb = 30, j = 15  

 b. If pj = $.15 substitution now yields j = 12, pb = 24.  

 c. To continue buying j = 15, pb = 30, David would need to buy 3 more ounces of jelly 

and 6 more ounces of peanut butter. This would require an increase in income of: 

3(.15) + 6(.05) = .75.  
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 d.   

 e. Since David N. uses only pb + j to make sandwiches (in fixed proportions), and 

because bread is free, it is just as though he buys sandwiches where  

psandwich = 2ppb + pj. 

  In part a, ps = .20, qs = 15; 

  In part b, ps = .25, qs = 12; 

  In general, 
s

s

3
 = q

p
 so the demand curve for sandwiches is a hyperbola.  

 f. There is no substitution effect due to the fixed proportion. A change in  price results in 

only an income effect.  

 

5.3 a. As income increases, the ratio x yp p  stays constant, and the utility-maximization 

conditions therefore require that MRS stay constant. Thus, if MRS depends on the 

ratio  y x , this ratio must stay constant as income increases. Therefore, since 

income is spent only on these two goods, both x and y are proportional to income.  

 b. Because of part (a), 0
x

I





 so Giffen's paradox cannot arise.  

 

5.4 a. Since 0.3 , 0.7x yx I p y I p  , 

  .3 .7 .3 .7.3 .7. .3 7 x y x yU    Ip p   BIp p      

  The expenditure function is then 1 .3 .7   

x yE = B .Up p  

 b. The compensated demand function is .7 .71/ .3 .c

x yx
x  E   p pp B

     

c. It is easiest to show Slutsky Equation in elasticities by just reading exponents from 

the various demand functions: 
, , ,

1, 1, .7, 0.3c
x x

x p x I xx p
e e e s       

  Hence 
, ,,

  or  1 0.7 0.3 1c
x x

x p x x Ix p
e e s e         
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5.6 a.  
2

, ,2
1

x

x x x
s I x I

x x

p x I Ip x I p xI I
e e

I p x I I p x

   
     


. 

  If, for example , ,1.5, 0.5
xx I s Ie e  .  

 b.  , ,

( )
1

x x x

x x x x
s p x p

x x

p x I p p x p x I
e e

p p x I I x

   
     


 

  If, for example, , ,0.75, 0.25
x x xx p s pe e    .  

c. Because I may be cancelled out of the derivation in part b, it is also the case that 

  
, , 1

x xx
p x p x pe e  .  

 d. 
, ,

( )
x y y

y x y y yx
s p x p

y x x y

p p x p p I pp x I x
e e

p p x I I p x p x

  
      

 
.  

 e.  Use part b: 

1

, 2
(1 )

(1 ) 1x x

k k k k

y x y xk k

s p x y xk k k k

y x y x

kp p kp p
e p p p

p p p p

  



 
   

 
. 

  To simplify algebra, let k k

y xd p p  

  Hence , ,

1
1 1

1 1x x xx p s p

kd kd d
e e

d d

 
    

 
. Now use the Slutsky equation, 

remembering that , 1x Ie  . 

  ,,

1 1 ( 1)
(1 )( )

1 1 1
c

xx
x p x xx p

kd d d k
e e s s

d d d


  
       

  
. 

  

5.7 a.  Because of the fixed proportions between h and c, know that the demand for ham is 

( )h ch I p p  . Hence 

  , 2

( )

( ) ( )h

h h h c h
h p

h h c h c

p p p p ph I
e

p h p p I p p

  
    
  

. 

  Similar algebra shows that ,
( )c

c
h p

h c

p
e

p p





. So, if , ,, 0.5

h ch c h p h pp p e e    .  

b. With fixed proportions there are no substitution effects. Here the compensated price 

elasticities are zero, so the Slutsky equation shows that , 0 0.5
xx p xe s    .  

 c.  With , ,

2 1
2   part a shows that ,

3 3h ch c h p h pp p e e
 

   .  

d. If this person consumes only ham and cheese sandwiches, the price elasticity of 

demand for those must be -1. Price elasticity for the components reflects the 

proportional effect of a change in the price of the component on the price the whole 
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sandwich. In part a, for example, a ten percent increase in the price of ham will 

increase the price of a sandwich by 5 percent and that will cause quantity demanded 

to fall by 5 percent.  

 

5.8 a.  
, , , ,(1 )   Hence  1

x y x yx p x x y p x y x p y pe s s e s s e e             .   

  The sum equals -2 (trivially) in the Cobb-Douglas case.  

 b. Result follows directly from part a. Intuitively, price elasticities are large when σ is 

large and small when σ is small.  

 c. A generalization from the multivariable CES function is possible, but the constraints 

placed on behavior by this function are probably not tenable. 

   

5.9 a. Because the demand for any good is homogeneous of degree zero, Euler’s theorem 

states 
1

0
n

i i
j

j j

x x
p I

p I

 
 

 
 . 

  Multiplication by 1 ix yields the desired result.   

b. Part b and c are based on the budget constraint 
i i

i

p x I . 

 Differentiation with respect to I yields: 1i i

i

p x I   . 

 Multiplication of each term by 
,  yields  1i i i i I

i

x I x I s e  . 

c. Differentiation of the budget constraint with respect to pj : 

 0i i j j

i

p x p x    . Multiplication by 
j i

i

p x

I x
  yields 

 
,i i j j

i

s e s  . 

 

5.10 Year 2's bundle is revealed preferred to Year 1's since both cost the same in Year 2's 

prices. Year 2's bundle is also revealed preferred to Year 3's for the same reason. But in 

Year 3, Year 2's bundle costs less than Year 3's but is not chosen. Hence, these violate the 

axiom.  
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CHAPTER 6  
 

DEMAND RELATIONSHIPS AMONG GOODS    
 

Two types of demand relationships are stressed in the problems to Chapter 6: cross-price effects 

and composite commodity results. The general goal of these problems is to illustrate how the 

demand for one particular good is affected by economic changes that directly affect some other 

portion of the budget constraint. Several examples are introduced to show situations in which the 

analysis of such cross-effects is manageable.  

 

Comments on Problems  

 

6.1 Another use of the Cobb-Douglas utility function that shows that cross-price effects are 

zero.  Explaining why they are zero helps to illustrate the substitution and income effects 

that arise in such situations.  

 

6.2 Shows how some information about cross-price effects can be derived from studying 

budget constraints alone.  In this case, Giffen’s Paradox implies that spending on all other 

goods must decline when the price of a Giffen good rises.  

 

6.3 A simple case of how goods consumed in fixed proportion can be treated as a single 

commodity (buttered toast).  

 

6.4 An illustration of the composite commodity theorem. Use of the Cobb-Douglas utility 

produces quite simple results.  

 

6.5 An examination of how the composite commodity theorem can be used to study the 

effects of transportation or other transactions charges.  The analysis here is fairly 

intuitive—for more detail consult the Borcherding-Silverberg reference.  

 

6.6 Illustrations of some of the applications of the results of Problem 6.5  

 

6.7 This problem demonstrates a special case in which uncompensated cross-price effects are 

symmetric.  

 

6.8 This problem provides a brief analysis of welfare effects of multiple price changes.  

 

6.9 This is an illustration of the constraints on behavior that are imposed by assuming 

separability of utility.  

 

6.10 This problem looks at cross-substitution effects in a three good CES function. 
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Solutions  
 

6.1 a.  As for all Cobb-Douglas applications, first-order conditions show 

that 0.5m sp m p s I  .  Hence 0.5   and  0.s ms I p s p      

 b. Because indifference curves are rectangular hyperboles (ms = constant), own 

substitution and cross-substitution effects are of the same proportional size, but in 

opposite directions.  Because indifference curves are homothetic, income elasticities 

are 1.0 for both goods, so income effects are also of same proportionate size.  Hence, 

substitution and income effects of changes in pm on s are precisely balanced.  

 c.  

  

0 |   and

0 |

U

m m

U

s s

s s s
m

p p I

m m m
s

p p I

  
  

  

  
  

  

 

  But | |   so  .
U U

m s

s m s m
m s

p p I I

   
 

   
  

 d. From part a:  
0.5 0.5 0.5

.
s m m

s m
m m m s s

I p p m s p I

      
        

      
  

 

6.2 Since  / 0 ,rr p        a rise in pr implies that  pr r definitely rises. Hence, j rp j I p r   

must fall, so j must fall.  Hence, 0rj p   .  

 

6.3 a. Yes, 2 .
bt b t
      p p p    

 b. Since 0.5
c bt

c = I, c /  = 0 .p p     

 c. Since changes in pb or pt affect only pbt , these derivatives are also zero.  

 

6.4 a. Amount spent on ground transportation 

  t
b t b

b

p
= b + t =   b + t p p p

p

 
 

 
 

    where    =  +  .t
b

b

p
= g g b tp

p
    

 b. Maximize U(b, t, p) subject to ppp + pbb + ptt = I.   

This is equivalent to Max U(g, p) = g
2
p   

Subject to p bp p p g I  .  
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 c. Solution is 
2

3 3
p b

I I
p          g  

p p
    

 d. Given pbg, choose  pbb = pbg/2        ptt = pbg/2. 

 

6.5 a. Composite commodity = 2 3 2 32 3 3
( )          p p px x kx x    

 b. Relative price 32

3 3

  t  t kpp
   

  t   tp p


 

 
  

  Relative price < 1 for t = 0.  Approaches 1 as t  .  Hence, increases in t raise 

relative price of x2.  

 c. Might think increases in t would reduce expenditures on the composite commodity 

although theorem does not apply directly because, as part (b) shows, changes in t also 

change relative prices.  

 d. Rise in t should reduce relative spending on x2 more than on 1x  since this raises its 

relative price (but see Borcherding and Silberberg analysis).  

 

6.6  a. Transport charges make low-quality produce relatively more expensive at distant 

locations.  Hence buyers will have a preference for high quality.  

 b. Increase in baby-sitting expenses raise the relative price of cheap meals.  

 c. High-wage individuals have higher value of time and hence a lower relative price of 

Concorde flights.  

 d. Increasing search costs lower the relative price of expensive items.  

 

6.7 Assume xi = aiI          xj = ajI  

 Hence: 
ji

j i j i

xx
  =   I =   x a a x

I I



 
  

 so income effects (in addition to substitution effects) are symmetric.  

  

6.8 a. 
' '

1 2 3 1 2 3( , , , , ) ( , , , , )n nCV E p p p p U E p p p p U   .  
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 b.   

  Notice that the rise p1 shifts the compensated demand curve for x2.  

 c. Symmetry of compensated cross-price effects implies that order of calculation is 

irrelevant.  

 d. The figure in part a suggests that compensation should be smaller for net 

complements than for net substitutes. 

     

6.9 a. This functional form assumes Uxy = 0.  That is, the marginal utility of x does not 

depend on the amount of y consumed.  Though unlikely in a strict sense, this 

independence might hold for large consumption aggregates such as “food” and 

“housing.”  

 b. Because utility maximization requires x x y yMU p MU p , an increase in income 

with no change in px or py must cause both x and y to increase to maintain this 

equality (assuming Ui > 0 and Uii < 0).  

 c. Again, using x x y yMU p MU p , a rise in px will cause x to fall, MUx to rise.  So 

the direction of change in x xMU p  is indeterminate.  Hence, the change in y is also 

indeterminate.  

 d. If U = yx
   1 

xMU   yx
   

  But ln    ln    ln U x y     xMU  = /x .  

  Hence, the first case is not separable; the second is.  

 

6.10 a. Example 6.3 gives 

x x y x z

I
x = 

 +  + p p p p p
  clearly / , / 0

y z
x   x    p p      so these 

are gross complements.  

 b. Slutsky Equation shows  y y U U

 x
x/  = x/   y p p |

 I



    


  so 

y U = U
x/  p |   could be 

positive or negative. Because of symmetry of y and z here, Hick’s second law 

suggests   and 0
y U =U z U =U

x/      x/   p | p |     .  
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CHAPTER 7  
 

PRODUCTION FUNCTIONS   
 

Because the problems in this chapter do not involve optimization (cost minimization principles 

are not presented until Chapter 8), they tend to have a rather uninteresting focus on functional 

form. Computation of marginal and average productivity functions is stressed along with a few 

applications of Euler’s theorem.  Instructors may want to assign one or two of these problems for 

practice with specific functions, but the focus for Part 3 problems should probably be on those in 

Chapters 8 and 9.  

  

Comments on Problems  

 

7.1 This problem illustrates the isoquant map for fixed proportions production functions.  

Parts (c) and (d) show how variable proportions situations might be viewed as limiting 

cases of a number of fixed proportions technologies.  

7.2 This provides some practice with graphing isoquants and marginal productivity 

relationships.  

7.3 This problem explores a specific Cobb-Douglas case and begins to introduce some ideas 

about cost minimization and its relationship to marginal productivities.   

7.4 This is a theoretical problem that explores the concept of “local returns to scale.”  The 

final part to the problem illustrates a rather synthetic production that exhibits variable 

returns to scale.  

7.5 This is a thorough examination of all of the properties of the general two-input Cobb-

Douglas production function.  

7.6 This problem is an examination of the marginal productivity relations for the CES 

production function.  

7.7 This illustrates a generalized Leontief production function.  Provides a two-input 

illustration of the general case, which is treated in the extensions.  

7.8 Application of Euler's theorem to analyze what are sometimes termed the “stages” of the 

average-marginal productivity relationship.  The terms “extensive” and “intensive” 

margin of production might also be introduced here, although that usage appears to be 

archaic.  

7.9 Another simple application of Euler’s theorem that shows in some cases cross second-

order partials in production functions may have determinable signs.  

7.10 This is an examination of the functional definition of the elasticity of substitution. It 

shows that the definition can be applied to non-constant returns to scale function if 

returns to scale takes a simple form.  
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Solutions 

 

7.1  a., b.  

    

  function 1:  use 10k, 5l 

  function 2:  use  8k, 8l  

 c. Function 1:       2k + l =  8,000 

   2.5(2k + l) = 20,000 

   5.0k + 2.5l = 20,000  

  Function 2:        k + l =  5,000 

       4(k + l) = 20,000 

       4k + 4l = 20,000  

  Thus, 9.0k, 6.5l is on the 40,000 isoquant  

  Function 1:    3.75(2k + l) = 30,000 

     7.50k + 3.75l = 30,000  

  Function 2:  2(k + l) = 10,000 

      2k + 2l = 10,000  

  Thus, 9.5k, 5.75l is on the 40,000 isoquant  
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7.2  2 20.8 0.2q kl k l     

 a. When k = 10, 210 0.2 80l l  q = 10L – 80 – .2L
2
. 

  Marginal productivity =  10 .4 0
dq

    l  
dl

   ,  maximum at l = 25 

    
2

2
.4 ,

qd
    

dl
      The total product curve is concave. 

  / 10 .2 80/l  q  l   l  lAP      

  To graph this curve:   
80

.2 0 maximum at  = 20.ldAP
       , l

dl l
     

  When l = 20, q = 40, APl = 0 where l = 10, 40.  

    

 b. 10 .4 , 10 .4 0, 25l    l        l       l  MP        

  See above graph.  

 c. 
220 20 .2 320k       q  l l   

 

  
320

20 .2 ; reaches max. at  = 40,  = 160l   l   l qAP
l

     

  20 .4 ,     0 at l = 50MPl l   .  
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 d. Doubling of k and l here multiplies output by 4 (compare a and c).  Hence the 

function exhibits increasing returns to scale.  

 

7.3 0.2 0.80.1q k l  

 a. q = 10 if k  = 100,  l = 100. Total cost is 10,000.  

 b. 0.8 0.2.02( ) , .08( )k lMP q k l k MP k l     .  Setting these equal yields 4l k  .  

Solving 0.2 0.810 0.1 (4 ) 0.303q k k k   .  So k = 3.3, l = 13.2.   

Total cost  is 8,250. 

 c. Because the production function is constant returns to scale, just increase all inputs 

and output by the ratio 10,000/8250 = 1.21.  Hence, k = 4, l = 16, q = 12.1.   

 d. Carla’s ability to influence the decision depends on whether she provides a unique 

input for Cheers.  

 

7.4 a. If  

  
,

( , ) ( , ),

( , ) ( , )
lim( 1) lim( 1) 1

( , ) ( , )
q t

f tk tl tf k l

f tk tl t f k l
e t t

t f tk tl f k l




     



.  

 b. , , ,

( , )
lim( 1) lim( 1)

( , )
q t q k q l

f tk tl t f f t
e t t k l e e

t f tk tl k l f

   
           

   
  

 c.  

  

2 1 1
2 3 1 1 1 1

,

(1 )
lim lim 2 2

1
2 ( 1) 2 2

q t

t k l t t
e q t k l qk l

t q q

q q
q

  
     

    


   

 

  Hence, , ,1  for  0.5, 1  for  0.5q t q te q e q    .  

 d.   The intuitive reason for the changing scale elasticity is that this function has an upper 

bound of q = 1 and gains from increasing the inputs decline as q approaches this 

bound.  
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7.5 q Ak l   

 a.  

  

1

1

2

2

1 1

0

0

( 1) 0

( 1) 0

0

k

l

kk

ll

kl

f Ak l

f Ak l

f Ak l

f Ak l

f Ak l

 

 

 

 

 





 

 











 

 

 

  

  

 

  

 b.   

  

1

,

1

,

q k

q l

q k k
e Ak l

k q q

q l k
e Ak l

l q q

 

 

 

 






    



    


.   

 c.  

  
1

,

( , )

lim( 1) lim( )q t

f tk tl t Ak l

q t t
e t t q

t q q

   

    



 




       



  

 d. Quasiconcavity follows from the signs in part a.  

 e. Concavity looks at: 

   

2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2

( 1) ( 1)

(1 )

kk ll klf f f A k l A k l

A k l

   

 

     

  

   

 

    

  
 

  This expression is positive (and the function is concave) only if 1     

 

7.6 a. 
(1 ) /

11
k

q
         k l kMP

k

   





     
 

1 11 ( / )     q kq k
       

  Similar manipulations yield 

1

l

q
  MP

l


 

  
 

 

 b. 
1

/ ( / )k lRTS    l kMP MP


   

 c. ,

1
/ / ( / )

1 ( / )
q  k  q k  k q  q k   e

  l k






     


 

  ,

1 1
( / )

1 ( / 1 ( /) )
q  l  q l     e

  k l   l k



 




  

 
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  Putting these over a common denominator yields , , 1q  k q  l    e e   which shows constant 

returns to scale.   

 d. Since σ = 
1

1 
  the result follows directly from part a. 

7.7 a. If 
0 1 2 3

q      kl  k  l         doubling k, l gives 

'

0 1 2 3 0
2 2 2 2  when  = 0      kl  k   l  q q           

 b. 0.5 0.5

1 3 1 20.5 ( / ) 0.5 ( / )l kMP k l MP l k        which are homogeneous of 

degree zero with respect to k and l and exhibit diminishing marginal productivities.  

 c. 
2

( q / l)  ( q / k  )
 = 

q
q  

k l


    



 

  

  

.5 .5
2 1 2 3 2 3
1 .5

1

 [  (k/l   +  (l/k ] + ) )
=  + 

q [0.25  (kl ])

    





 which clearly varies for different values of 

k, l.  

 

7.8 ( , )q f k l  exhibits constant returns to scale.  Thus, for any t > 0, ( , ) ( , )f tk tl tf k l . 

 Euler’s theorem states ( , ) k ltf k l f k f l  .  Here we apply the theorem for the case where 

t = 1: hence, ( , ) , ( )k l l kq f k l f k f l q l f f k l     . If    then  0l kf q l f  , hence 

no firm would ever produce in such a range.  

 

7.9 If k lq f k f l  , partial differentiation by l yields  l kl ll lf f k f l f   .  Because 0llf  , 

0klf  .  That is, with only two inputs and constant returns to scale, an increase in one 

input must increase the marginal productivity of the other input.  

 

7.10 a. This transformation does not affect the RTS: 

  
1

1

l l l

k k k

F f f f
RTS

F f f f












   .  Hence, by definition, the value of   is the same for both 

functions.  The mathematical proof is burdensome, however. 

 b.   The RTS for the CES function is    
1 1

RTS l k l k
 

  .  This is not affected by the 

power transformation.  
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CHAPTER 8 
 

COST FUNCTIONS 
 

 

The problems in this chapter focus mainly on the relationship between production and cost 

functions.  Most of the examples developed are based on the Cobb-Douglas function (or its CES 

generalization) although a few of the easier ones employ a fixed proportions assumption.  Two of 

the problems (8.9 and 8.10) make some use of Shephard’s Lemma since it is in describing the 

relationship between cost functions and (contingent) input demand that this envelope-type result 

is most often encountered. 

 

 

Comments on Problems 

 

8.1 Famous example of Viner’s draftsman.  This may be used for historical interest or as a 

way of stressing the tangencies inherent in envelope relationships . 

 

8.2 An introduction to the concept of ―economies of scope.‖ This problem illustrates the 

connection between that concept and the notion of increasing returns to scale. 

 

8.3 A simplified numerical Cobb-Douglas example in which one of the inputs is held fixed. 

 

8.4 A fixed proportion example. The very easy algebra in this problem may help to solidify 

basic concepts. 

 

8.5 This problem derives cost concepts for the Cobb-Douglas production function with one 

fixed input. Most of the calculations are very simple. Later parts of the problem illustrate 

the envelope notion with cost curves.   

   

8.6 Another example based on the Cobb-Douglas with fixed capital. Shows that in order to 

minimize costs, marginal costs must be equal at each production facility. Might discuss 

how this principle is applied in practice by, say, electric companies with multiple 

generating facilities. 

 

8.7 This problem focuses on the CES cost function. It illustrates how input shares behave in 

response to changes in input prices and thereby generalizes the fixed share result for the 

Cobb-Douglas. 

 

8.8 This problem introduces elasticity concepts associated with contingent input demand.  

Many of these are quite similar to those introduced in demand theory. 

 

8.9 Shows students that the process of deriving cost functions from production functions can 

be reversed. Might point out, therefore, that parameters of the production function 

(returns to scale, elasticity of substitution, factor shares) can be derived from cost 

functions as well—if that is more convenient. 
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8.10 Illustrates a cost function that arises from a very simple CES production function.   

 

Solutions 
 

8.1 Support the draftsman.  It’s geometrically obvious that SAC cannot be at minimum 

because it is tangent to AC at a point with a negative slope.  The only tangency occurs at 

minimum AC.  

 

8.2 a.  By definition total costs are lower when both q1 and q2 are produced by the same firm 

than when the same output levels are produced by different firms [C(q1,0) simply 

means that a firm produces only q1].  

 b.  Let q = q1+q2, where both q1 and q2 >0.  Because 1 2 1 1( , ) / ( ,0) /C q q q C q q  by 

assumption, 1 1 2 1( , ) / ( ,0)q C q q q C q . Similarly 2 1 2 2( , ) / (0, )q C q q q C q . Summing 

yields 1 2 1 2( , ) ( ,0) (0, )C q q C q C q  , which proves economies of scope. 

 

8.3 a. 0.5 0.5 30 25 150900q     J      J      q  J     

              J = 100   q = 300 

              J = 225   q = 450  

 b. Cost = 12 J = 12q
2
/900 

  
24 2

900 75

dC q q
MC      

dq
    

  q = 150     MC = 4  

              q = 300     MC = 8  

             q = 450     MC = 12  

 

8.4 q = min(5k, 10l)    v = 1    w = 3    C = vk + wl = k + 3l  

 a. In the long run, keep 5k = 10,  k = 2l 

  
5

2 3 5 0.5 0.5 0.5
10

l
C  l  l  l q     AC        MC  .

l
         

 b. k = 10    q = min(50, 10l) 

  5, 10 10 3 10 0.3l   q  l     C    l   q       

  
10

0.3AC    
q

   
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  If l > 5, q = 50    C = 10 + 3l    
10 3

50

  l
AC  


   

  MC is infinite for q > 50.  

  MC10 = MC50 = .3.  

  MC100 is infinite.  

 

8.5 a.  2 , 100, 2 100 20q  kl    k   q   l    q  l     

  
2

20 400

q q
l       l     

  
2 2

1(100) 4 100
400 100

q q
SC  vK wL        

 
      

 
  

  
100

100

SC q
SAC      

q q
    

 b. 
2

25
.    25,   100    106.25

50 100

q
SMC     If q SC

 
     

 
  

  
100 25 25

4.25 .50
25 100 50

SAC           SMC           

  If q = 50, SC = 100 + 
2

50
125

100
  

 
 

 
  

  
100 50 50

2.50 1
50 100 50

SAC           SMC           

  If q = 100, SC = 100 + 
2

100
200

100
  

 
 

 
 

  
100 100 100

2 2 .
100 100 50

SAC           SMC           

  If q = 200, SC = 100 + 
2

200
500

100
  

 
 

 
 

  
100 200 200

2.50 4 .
200 100 50

SAC           SMC            



Chapter 8/Cost Functions     35 

 c.  

 d. As long as the marginal cost of producing one more unit is below the average-cost 

curve, average costs will be falling.  Similarly, if the marginal cost of producing one 

more unit is higher than the average cost, then average costs will be rising.  Therefore, 

the SMC curve must intersect the SAC curve at its lowest point. 

 e. 
2 2

2    4         / 4q  kl  so kl l kq q    

  
2

/ 4SC  vk  wl  vk   kwq     

 f. 
22 0.5 0.5/ 4 0 so  = 0.5

SC
  v  k    k qw vwq

k


  


  

 g. 
0.50.5 0.5 0.5 0.5 0.50.5 0.5C = vk + wl = q  + q   =  qww v w v v   (a special case of Example 8.2)  

 h. If w = 4     v = 1,    C = 2q 

  
2

( 100) 100 /100SC  k      q    , SC = 200 = C for q = 100 

  
2

( 200) 200 / 200SC  k      q    , SC = 400 = C for q = 200 

  SC = 800 =  C for q = 400  

 

8.6 a. 1 2total
 = q qq  .  1 1 21 2

25 5 10           q ql l l     

  
2 2

1 1 21 2
25 25 / 25 100 /100              S      q qSC l C        

  
2 2

1 2
total 1 2 =  +  = 125 +  + 

25 100

q q
SC SCSC   

  To minimize cost, set up Lagrangian:   1 2? )SC q q q    . 

  1

1

2£
0

25

q
      

q



  


  

  2

2

2£
0

100

q
      

q



  


  

  Therefore 1 20.25q q .  
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 b. 
1 2 1 2

4 1/ 5 4 / 5          q        qq q q q     

  
2

2 125
125

125 125 125

q qq
SC         SMC       SAC    

q
       

  
200

(100) $1.60
125

SMC          

  SMC(125) = $2.00  SMC(200) = $3.20  

 c. In the long run, can change k so, given constant returns to scale, location doesn’t 

really matter.  Could split evenly or produce all output in one location, etc.  

  C = k + l = 2q  

  AC = 2 = MC  

 d. If there are decreasing returns to scale with identical production functions, then 

should let each firm have equal share of production.  AC and MC not constant 

anymore, becoming increasing functions of q.  

 

8.7 a.   1 1 1 1 1[( ) ( ) ]C q v a w b       . 

 b.   a b a bC qa b v w  . 

 c.   wl vk b a . 

 d.   1( / )
[ ] so ( ) ( )
( )

v a
l k wl vk v w b a

w b

    .  Labor’s relative share is an increasing 

function of b/a.  If σ > 1 labor’s share moves in the same direction as v/w.  If σ < 1, 

labor’s relative share moves in the opposite direction to v/w.  This accords with 

intuition on how substitutability should affect shares.  

8.8 a.   The elasticities can be read directly from the contingent demand functions in Example 

8.4.  For the fixed proportions case, 
, ,

0c cl w k v
e e   (because q is held constant).  For 

the Cobb-Douglas,  
, ,

,c cl w k v
e e           .  Apparently the CES in this 

form has non-constant elasticities. 

b. Because cost functions are homogeneous of degree one in input prices, contingent 

demand functions are homogeneous of degree zero in those prices as intuition 

suggests.  Using Euler’s theorem gives 0c c

w vl w l v  .  Dividing by cl  gives the result.  

 c. Use Young’s Theorem: 

  
2 2c cl C C k

v v w w v w

   
  

     
  Now multiply left by   right by  

c c

c c

vwl vwk

l C k C
.  

d. Multiplying by shares in part b yields 
, ,

0c cl ll w l v
s e s e  .  Substituting from part c 

yields  
, ,

0c cl kl w k w
s e s e  .  
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 e. All of these results give important checks to be used in empirical work.  

  

8.9   From Shephard’s Lemma  

 a. 

1/ 3 2 / 3
2 1

3 3

C v C w
l q k q

w w v v

    
      
    

   

 b. Eliminating the w/v from these equations:  

   
2/3

1/3 2/3 1/3 2/3 1/33
3

2
q     l  k   Bl k

 
  
 

 which is a Cobb-Douglas production function.  

 

8.10 As for many proofs involving duality, this one can be algebraically messy unless one sees 

the trick.  Here the trick is to let B = (v
.5

 + w
.5

).  With this notation, C = B
2
q.  

 a.   Using Shephard’s lemma,  

  
0.5 0.5 .

C C
k Bv q l Bw q

v w

  
   
 

  

 b. From part a,  

  
0.5 0.5

1 1 1, 1
q v q w q q

so or k l q
k B l B k l

          

  The production function then is 1 1 1( ) .q k l      

c. This is a CES production function with  = –1.  Hence,  = 1/(1 – ) = 0.5.  

Comparison to Example 8.2 shows the relationship between the parameters of  the 

CES production function and its related cost function.  
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CHAPTER 9  
 

PROFIT MAXIMIZATION  
 

Problems in this chapter consist mainly of applications of the P = MC rule for profit 

maximization by a price-taking firm.  A few of the problems (9.2–9.5) ask students to derive 

marginal revenue concepts, but this concept is not really used in the monopoly context until 

Chapter 13.  The problems are also concerned only with the construction of supply curves and 

related concepts since the details of price determination have not yet been developed in the text.   

 

Comments on Problems  

 

9.1 A very simple application of the P = MC rule.  Results in a linear supply curve.  

 

9.2 Easy problem that shows that a tax on profits will not affect the profit-maximization 

output choice unless it affects the relationship between marginal revenue and marginal 

cost.  

 

9.3 Practice with calculating the marginal revenue curve for a variety of demand curves.  

 

9.4 Uses the MR-MC condition to illustrate third degree price discrimination.  Instructors 

might point out the general result here (which is discussed more fully in Chapter 13) that, 

assuming marginal costs are the same in the two markets, marginal revenues should also 

be equal and that implies price will be higher in the market in which demand is less 

elastic.  

 

9.5 An algebraic example of the supply function concept.  This is a good illustration of why 

supply curves are in reality only two-dimensional representations of multi-variable 

functions.  

 

9.6 An introduction to the theory of supply under uncertainty.  This example shows that 

setting expected price equal to marginal cost does indeed maximize expected revenues, 

but that, for risk-averse firms, this may not maximize expected utility.  Part (d) asks 

students to calculate the value of better information.  

 

9.7 A simple use of the profit function with fixed proportions technology.   

 

9.8 This is a conceptual examination of the effect of changes in output price on input demand.  

 

9.9 A very brief introduction to the CES profit function.  

 

9.10 This problem describes some additional mathematical relationships that can be derived 

from the profit function.    
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Solutions 

 

9.1 a. 0.2 10MC C q q     set MC = P = 20, yields q
*
 = 50  

 b. π = Pq – C = 1000 – 800 = 200  

 c.  

 

9.2 ( ) ( ) ( )q R q C q    With a lump sum tax T 

( ) ( ) ( )q R q C q T      , MC=      MR0 = 0  
q

C
  

q

R
 = 

q














 no change 

 Proportional tax    ( ) (1 )[ ( ) ( )]q t R q C q     

 (1 )( ) 0, ,    t MR  MC        MR  MC  
q


    


 no change 

 Tax per unit   ( ) ( ) ( )q R q C q tq     

 0 = t   MC  MR= 
q





, so MR = MC + t, q is changed: a per unit tax does affect output.  

 

9.3 a. q = a + bP,   
2

(1/ )
dP q a q a

MR  P  q     q  b   
dq b b

 
      

  Hence, q = (a + bMR)/2.  

  Because the distance between the vertical axis and the demand curve is q = a + bP, it 

is obvious that the marginal revenue curve bisects this distance for any line parallel to 

the horizontal axis.  

 b. If ; 0;
q  a

q  a  bP  b   P  
b


     

  
2 1q  a

MR       P  MR    q
b b


      
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 c. Constant elasticity demand curve:  q = aP
b
, where b is the price elasticity of demand. 

  























b

aq

a

q

q

P
qPMR

bb /1/1
)/(

   

  Thus, vertical distance = P – MR  
b

P

b

aq b 





/1)/(
 (which is positive because  

b < 0)  

 d. If eq,P < 0 (downward-sloping demand curve), then marginal revenue will be less than 

price.  Hence, vertical distance will be given by P – MR.  

  Since  ,
dq

dP
 q + P = MR  vertical distance is and since 

dP dq
q  , b

dq dP
   is the slope of 

the tangent linear demand curve, the distance becomes 
1

  q
b

  as in Part (b). 

 e.   

 

9.4 Total cost = C = .25q
2
 = .25(qA + qL)

2
 

 qA = 100 – 2PA          qL = 100 – 4PL  

 PA = 50 – qA/2          PL = 25 – qL/4  

 
2

50 / 2A A A A A
       q q qR P     RL = PLqL = 

2
25 / 4

L L
  q q   

 MRA = 50 – qA           MRL = 25 – qL/2  

 MCA = .5(qA + qL)       MCL = .5(qA + qL)  
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 Set  MRA = MCA   and        MRL = MCL  

 50 – qA = .5qA + .5qL        25 – 
2

L
q

 = .5qA + .5qL 

 Solving these simultaneously gives        

  qA = 30        PA = 35          

  qL = 10        PL = 22.5        π = 1050 + 225 ––400 = 875  

 

9.5 a. Since q = 
2 2

2 , 4 / 4 .l     l     C  wl    q wq     

  Profit maximization requires P = MC = 2wq/4.  

  Solving for q yields q = 2P/w.  

 b. Doubling P and w does not change profit-maximizing output level.  

  π = Pq – TC = 2P
2
/w –P

2
/w = P

2
/w, which is homogeneous of degree one in P and w.  

 c. It is algebraically obvious that increases in w reduce quantity supplied at each  given 

P.  

 

9.6 a. Expected profits = E(π)  = .5[30q – C(q)] + .5[20q ––C(q)] = 25q ––C(q).  

  Notice 25 = E(P) determines expected profits.    

  For profit maximum set E(P) = MC = q + 5  so q = 20  

  E(π) = E(P)q – C(q) = 500 – 400 = 100.  

 b. In the two states of the world profits are 

  P = 30          π = 600 – 400 = 200 

  P = 20          π = 400 – 400 = 0 and expected utility is given 

by ( ) .5 200 .5 0 7.1E U            

 c. Output levels between 13 and 19 all yield greater utility than does q = 20.  Reductions 

in profits from producing less when P is high are compensated for (in utility terms) 

by increases in profits when P is low.  Calculating true maximum expected utility is 

difficult—it is approximately q = 17.  

 d. If can predict P, set P = MC in each state of the world.    

  When P = 30  q = 25    π = 212.5,  P = 20  q = 15  π  = 12.5  

E(π) = 112.5 

( ) .5 212.5 .5 12.5 9.06E U          —a substantial improvement.  

9.7 a.   In order for the second order condition for profit maximization to be satisfied, 

marginal cost must be decreasing which, in this case, requires diminishing returns to 

scale.  
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 b.  

  

0.5 0.5 2

2

10 10   so  100

( ) 100

q k l k l q

C vk wl q v w

   

   
 

  Profit maximization requires ( ) 50  or  50 ( )P MC q v w q P v w     . 

  2 2 2( , , ) 50 ( ) [50 ( )] ( ) 100 25 ( )v w P Pq C P v w P v w v w P v w          . 

 c. If  1000, 500, 600  then  20, 6000v w P q      .  

 d. If  1000, 500, 900  then  30, 13500v w P q      .  

 e.   

 

9.8 a. With marginal cost increasing, an increase in P will be met by an increase in q. To 

produce this extra output, more of each input will be hired (unless an input is inferior).  

 b. The Cobb-Douglas case is best illustrated in two of the examples in Chapter 9. In 

Example 9.4, the short-run profit function exhibits a positive effect of P on labor 

demand. A similar result holds in Example 9.5 where holding a third input constant 

leads to increasing marginal cost.  

 c. 2[ ]l P w P P w q w               .  The sign of the final derivative may 

be negative if l is an inferior input.  

 

9.9 b. Diminishing returns is required if MC is to be increasing—the required second order 

condition for profit maximization.  

 c.   σ determines how easily firms can adapt to differing input prices and thereby shows 

the profitability obtainable from a given set of exogenous prices.  

 d. 1 1 1 1 (1 )( 1)(1 ) ( )q P K P v w                  .  This supply function shows that 

σ does not affect the supply elasticity directly, but it does affect the shift term that 

involves input prices.  Larger values for σ imply smaller shifts in the supply 

relationship for given changes in input prices.  

 e. See the results provided in Sydsaeter, Strom, and Berck.  
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9.10 a. 2 2l v v w w v k w               .  This shows that cross price effects in input 

demand are equal.  The result is similar to the equality of compensated cross-price 

effects in demand theory.  

 b. The direction of effect depends on whether capital and labor are substitutable or 

complementary inputs.  

 c. 2 2q w w P P w l P               .  This shows that increases in wages have 

the same effect on reducing output that a fall in the product price has on reducing 

labor demand.  This is, the effects of wages and prices are in some ways symmetrical. 

 d. Because it seems likely that 0l P    (see Problem 9.8), we can conclude that 

0q w    —that is, a tax on labor input should reduce output. 
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CHAPTER 10 
 

THE PARTIAL EQUILIBRIUM COMPETITIVE MODEL 
 

 

The problems in this chapter focus on competitive supply behavior in both the short and long 

runs. For short-run analysis, students are usually asked to construct the industry supply curve (by 

summing firms’ marginal cost curves) and then to describe the resulting market equilibrium.  

The long-run problems (10.5– 10.8), on the other hand, make extensive use of the equilibrium 

condition P = MC = AC to derive results.  In most cases, students are asked to graph their 

solutions because, I believe, such graphs provide considerable intuition about what is going on. 

 

 

Comments on Problems 

 

 

10.1 This problem asks students to constructs a marginal cost function from a cubic cost 

function and then use this to derive a supply curve and a supply-demand equilibrium.  

The math is rather easy so this is a good starting problem. 

 

10.2 A problem that illustrates “interaction effects.”  As industry output expands, the wage for 

diamond cutters rises, thereby raising costs for all firms. 

 

10.3 This is a simple, though at times tedious, problem that shows that any one firm’s output 

decision has very little effect on market price.  That is shown to be especially true when 

other firms exhibit an elastic supply response in reaction to any price changes induced by 

any one firm altering its output.  That is, any one firm’s effect on price is moderated by 

the induced effect on other firms. 

 

10.4 This is a tax-incidence problem.  It shows that the less elastic the supply curve, the 

greater the share of tax paid this is paid by firms (for a given demand curve).  Issues of 

tax incidence are discussed in much greater detail in Chapter 11. 

 

10.5 This is a simple problem that uses only long-run analysis.  Once students recognize that 

the equilibrium price will always be $3.00 per bushel and the typical firm always 

produces 1,000 bushels, the calculations are trivial. 

 

10.6 A problem that is similar to 10.5, but now introduces the short-run supply curve to 

examine differences in supply response over the short and long runs. 

 

10.7 This problem introduces the concept of increasing input costs into long-sun analysis by 

assuming that entrepreneurial wages are bid up as the industry expands.  Solving part (b) 

can be a bit tricky; perhaps an educated guess is the best way to proceed. 

 

10.8 This exercise looks at an increase in cost that also shifts the low point of the typical 

firm’s AC curve.  Here the increase in cost reduces optimal firm size and has the 
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seemingly odd effect of a cost increase leading to a fall in quantity demanded but an 

increase in the number of firms. 

 

Solutions 
 

10.1 
3 2 21

( ) .2 4 10 ( ) .01 .4 4
300

C q   q       MC q     q  q q q        

 a. Short run:  P = MC          P = .01q
2
 + .4q + 4  

  100P = q
2
 + 40q + 400 = (q + 20)

2
 = 100P,  

  20 10 10 20q    P      q  P        

 b. Industry:  100 1000 2000Q  q P       

  c. Demand: 200 8000Q P             set demand = supply 

  200 8000 1000 2000P    P       

  1000 200 10,000P  P     

  5 50, 25 3000P  P   P    Q        

  For each firm q = 30, C = 400, AC = 13.3,  π = 351.  

 

10.2 C = q
2
 + wq  2MC q w     

 a.  w = 10         C = q
2
 + 10q 

  MC = 2q + 10 = P      0.5 5q P   

  Industry 
1000

1

500 5000Q   q  P     

  at 20, Q = 5000; at 21, Q = 5500  

 b. Here, MC = 2q + .002Q for profit maximum, set = P  

  0.5 0.001q P Q   

  Total 
1000

1

500 250Q   q  P  Q     Q  P     

  P = 20, Q = 5000     Supply is more steeply sloped in this case where expanded output 

bids up wages.  

  P = 21, Q = 5250   
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10.3 a. Very short run, QS = (100)(1000) = 100,000.  Since there can be no supply response, 

this Q must be sold for whatever the market will bear:  

  160,000 – 10,000P = 100,000.             P
*
 = 6  

 b. For any one firm, quantity supplied by other firms is fixed at 99,900.   

  Demand curve facing firm is q = 160,000 – 10,000P – 99,900 = 60,100 – 10,000P. 

 c. If quantity supplied by the firm is zero,  

  qS = 0 = qD = 60,100 – 10,000P.          P
*
 = 6.01  

  If quantity supplied by the firm is 200,  

  qS = 200 = qD = 60,100 – 10,000P        P
*
 = 5.99  

 d. eQ,P = – 
6

10,000 ? 6
100,000

       

  For single firm:  eq,P = – 
6

10,000 ? 00.
100

        

  Demand facing the single firm is “close to” infinitely elastic. Now redo these parts 

with short-run supply of qi = – 200 + 50P  

 a. QS = 1000qi = – 200,000 + 50,000P  

  Set supply = demand:  Resulting equilibrium price is  P
*
 = 6  

 b. For any one firm, find net demand by subtracting supply by other 999 firms.   

qD = 160,000 – 10,000P – (– 199,800 + 49,950P)  = 359,800 – 59,950P  

 c. If * 359,800
0, 6.002 .

59,950
S
        q P    

  If * 359,600
200, 5.998.

59,950
S
        q P     

 d. Elasticity of the industry demand curve remains the same.  Demand curve facing the 

firm is even more elastic than in the fixed supply case: 

  
6

59,950 3597.
100

q p      e        

 

10.4 a. QD = 100 – 2P          QS = 20 + 6P  

  At equilibrium, QD = QS.  

  100 – 2P = 20 + 6P     P
*
 = $10, Q

*
 = 80  

 b. Demanders and suppliers are now faced with different prices PS = PD – 4.  Each will 

make decisions on quantity based on the price that it is faced with:  

  QD = 100 – 2PD      QS = 20 + 6PS = 20 + 6(PD – 4). 
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  The new equilibrium:  100 – 2PD = 20 + 6PD – 24  

   8PD = 104,   PD = $13 

  PS = $9, Q = 74  

  The burden of the tax is shared: demanders pay $3 more for each frisbee while 

suppliers receive $1 less on each sale.  

 c. QS = 70 + P 

  At equilibrium, QD = QS. 

  100 – 2P = 70 + P,     P
*
 = $10,     Q

*
 = 80  

  After tax:  QD = 100 – 2PD  

                 QS = 70 + PS = 70 + PS – 4  

       100 – 2PD = 70 + PD – 4  

                3PD = 34,  PD = 11.3,  PS = 7.3,  Q = 77.3  

  While burden is still shared, in this case suppliers pay relatively more of the tax.  

 

10.5 a. QD = 2,600,000 – 200,000P   

In the long run, P = $3, so QS = QD = 2,600,000 – 200,000(3) = 2,000,000. 

  Since QS = 2,000,000 bushels, there are  
2000000 bushels

2000 farms
1000 bushels/farm

   

 b. QS = QD = 3,200,000 – 200,000P  

  In the short run, QS = 2,000,000, so 2,000,000 = 3,200,000 – 200,000P 

  1,200,000 = 200,000P          P = $6/bushel  

    ( ) 1000(6 3) 3000q P AC        

 c. P = $3/bushel in the long run.  

  QS = QD = 3,200,000 – 200,000(3) = 2,600,000 bushels 

  There will be 
2,600,000 bushels

 = 2,600 farms.
1000 bushels/farm

 
  

 d.   
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10.6 a. LR supply curve is horizontal at P
*
 = MC = AC = 10.  

 b. Q
*
 = 1500 – 50P

*
 = 1000.  Each firm produces  

  q
*
 = 20,  π = 0.  There are 50 firms.  

 c. MC = q – 10, AC = .5q – 10 + 200/q  

  AC = min when AC = MC        .5q = 200/q, q = 20.  

 d. P = MC = q – 10.     q = P + 10, for industry 
50

1

50 500 .Q   q  P        

 e. Q = 2000 – 50P    if Q = 1000, P = 20.  Each firm produces q = 20,  

  π = 20(20 – 10) = 200.  

 f. 50P + 500 = 2000 – 50P          P = 15,   Q = 1250.  

  Each firm produces q = 25,  π = 25(15 – AC) = 25(15 – 10.5) = 112.5.  

 g. P
*
 = 10 again, Q = 1500, 75 firms produce 20 each. π = 0.  

 

10.7 a. 2( , ) 0.5 10C q w q q w       Equilibrium in the entrepreneur market requires 

0.25   or  4S DQ w Q n w n    .  Hence 2( , ) 0.5 10 4c q w q q n   . 

MC = q – 10  

4n
AC = .5q 10 + 

q
   

  In long run equilibrium:    AC = MC so 
4

10 .5 10
n

q   q    
q

     

  
4

.5 8
n

q       q  n
q

    

  Total output is given in terms of the number of firms by  8 .Q  nq  n n    Now in 

terms of supply-demand equilibrium,  QD = 1500 – 50P and P = MC = q – 10, or q = 

P + 10. 

          QS = nq = n(P + 10).  

  Have 3 equations in Q, n, P.  Since 8Q  n n  and Q = n(P + 10), we have  

8 ( 10) 8 10 .n n  n P       P  n        1500 50 1500 50 8 500
D
    P    n  Q       

2000 50 8 8
S

  n    n nQ      or ( 50) 8 2000n  n      

              n = 50 (= # of entrepreneurs) 

  8 1000Q  n n     

               q = Q/n = 20 

               P = q – 10 = 10 
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    w = 4n = 200.  

 b. Algebra as before, ( 50) 8 2928n n  ,  therefore n = 72 

    1728Q n 8n   

    q = Q/n = 24 

    P = q – 10 = 14 

    w = 4n = 288  

 c.    

  This curve is upward sloping because as new firms enter the industry the cost curves 

shift up: 0.5 10 (4 )AC q n q    as n increases, AC increases.  

 

10.8 a. 2( , ) 10 100C q w wq q    

  If w = $1, C = q
2
 – 10q + 100. 

  MC = 2q – 10        AC = q – 10 + 
100

q
 

  In the long run equilibrium, AC = MC  

  2q – 10 = q – 10 + 
100

, 
q

 q
2
 = 100, q =10 = output for typical mushroom producer.  

 b. Constant costs industry means that as new firms enter this low point of average, total 

cost remains unchanged, resulting in a horizontal supply curve at P = $10 (when  

q = 10, AC = $10).  Thus, long-run equilibrium P = $10 and Q = 30,000.  There will 

be
30,000

10
 = 3,000 firms. 

 c. If w = $4        C = 4q
2
 – 10q + 100  

     MC = 8q – 10        AC = 4q – 10 + 
100

q
.  

  In the long run      AC = MC  



50   Solutions Manual 

    8q – 10 = 4q – 10 +
100

q
, q

2
 = 25, q = 5. 

  Long-run equilibrium price = low point of AC, = 30. 

  Thus, Q = – 1,000(30) + 40,000 = 10,000.  

  There will be 
10,000

5
 = 2,000 firms. 

 d. For part (a), still have optimal q = 10.  

  For part (b), now QD = – 1,000(10) + 60,000 = 50,000  

  so 
50,000

5,000
10

n        

  For part (c) q = 5, P = 30.  QD = 30,000  

  
30,000

6,000
5

n      .  

  For part (d) demand is less elastic so reduction in optimal size more than compensates 

for reduction in quantity demanded as a result of cost increase, so the number of firms 

rises. 
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CHAPTER 11 
 

APPLYING THE COMPETITIVE MODEL 
 

 

The problems in this chapter are intended to illustrate the types of calculations made using 

simple competitive models for applied welfare analysis. Usually the problems start from a 

supply-demand framework much like that used for the problems in Chapter 10.  Students are 

then asked to evaluate the effects of changing equilibria on the welfare of market participants.  

Notice that, throughout the problems, consumer surplus is measured as the area below the 

Marshallian (uncompensated) demand curve. 

 

 

 Comments on Problems 

 

11.1 Illustrates some simple consumer and producer surplus calculations.  Results of this 

problem are used later to examine price controls (Problem 11.4) and tax incidence 

(Problem 11.5). 

 

11.2 This problem illustrates the computations of short-run produce surplus in a simple linear 

case. 

 

11.3 An increasing cost example that illustrates long-run producer surplus.  Notice that both 

producer surplus and rent calculations must be made incrementally so that total values 

will add-up properly. 

 

11.4 A continuation of Problem 11.1 that examines the welfare consequences of price controls. 

 

11.5 Another continuation of Problem 11.1 that examines tax incidence with a variety of 

different demand and supply curves.  The solutions also provide an elasticity 

interpretation of this problem. 

 

11.6 A continuation of Problem 11.2 that looks at the effects of taxation on short-run producer 

surplus. 

 

11.7 A continuation of Problem 11.3 that examines tax incidence, long-run producer surplus, 

and changes in input rents. 

 

11.8 Provides some simple computations of the deadweight losses involved with tariffs. 

 

11.9 A continuation of Problem 11.8 that examines marginal excess burden.  Notice that the 

increase in the tariff rate actually reduces tariff revenue in this problem. 

 

11.10 A graphical analysis for the case of a country that faces a positively sloped supply curve 

for imports. 
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Solutions 
 

11.1 a. Set QD = QS    1000 – 5P = 4P -80  P* = 120, Q* = 400.  

  For consumers, 200 = maxP  For producers, 20 = minP   

  CS = .5(200 – 120)(400) = 16,000  

  PS = .5(120 – 20)(400) = 20,000  

 b. Loss = .5(100)(PD – PS) where PS is the solution to   

  300 = 4PS – 80  PS = 95  

  PD is the solution to  300 = 1000 – 5PD so  PD = 140  

  Total loss of consumer and producer surplus = 50(45) = 2250  

 c. If P = 140  

  CS = .5(300)(60) = 9000  

  PS = .5(300)(95 – 20) + 45(300) = 11,250 + 13,500 = 24,750  

  Producers gain 4,750, consumers lose 7,000.  The difference (2250) is the deadweight 

loss.  

  If P = 95  

  CS = 9000 + 13,500 = 22,500  

  PS = 11,250  

  Consumers gain 6500, producers lose 8,750.  Difference is again the deadweight loss, 

2,250. 

 d. With Q = 450 have  

  450 = 1000 – 5PD  PD = 110  

  450 = 4PS – 80  PS = 132.5  

Loss of surplus is 0.5 50 ( ) 25(22.5) 562.5.S DP P      As in part c, this total loss is 

independent of price, which can fall between 110 and 132.5.  

 

11.2 a. Short-run supply is q = P – 10, market supply is 100q = 100P – 1000.  

 b. Equilibrium where 100P – 1000 = 1100 – 50P, P = 14, Q = 400.  

 c. Since QS = 0 when P = 10,  Producer Surplus = .5(14 – 10)(400) = 800.  

 d. Total industry fixed cost = 500.  

  For a single firm  3 = 53  56 =5]  + 40 + )[.5(4  14(4) = 
2

  

  Total industry profits = 300  

  Short-run profits + fixed cost = 800 = producer surplus.  
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11.3 a. The long-run equilibrium price is 10 + r = 10 + .002Q.  

  So, Q = 1050 – 50(10 + .002Q) = 550 + .1Q   so  

       Q = 500, P = 11, r = 1.  

 b. Now Q = 1600 – 50(10 + .002Q) = 1100 + .1Q  

         Q = 1000, P = 12, r  = 2.  

 c. Change in PS = 1(500) + .5(1)(500) = 750.  

 d. Change in rents = 1(500) + .5(1)(500) = 750.  The areas are equal.  

 

11.4 a. Equilibrium is given by 1270 – 5P = 4P – 80  

  P = 150 Q = 520.  

 b. Now the maximum demanders will pay is 254 = 5/1270 = maxP   

  CS = .5(520)(254 – 150) = 27,040 

  Minimum supply price is Pmin = 80/4 = 20  

  PS = .5(520)(150 – 20) = 33,800  

 c. With P fixed at 120, Q = 400  

  400 = 1270 – 5PD  

  PD = 174  

  CS = .5(400)(254 – 174) + (400)(174 – 120) = 16,000 + 21,600 = 37,600  

  PS = .5(400)(120 – 20) = 20,000.  

  The change in CS represents a transfer from producers to consumers of  

400(150 – 120) = 12,000 less a deadweight loss of .5(120)(174 – 150) = 1440.  

  The change in PS represents a transfer of 12,000 to consumers and a deadweight loss 

of .5(120)(150 – 120) = 1,800.  Total deadweight loss is 3,240.  

 

11.5 a. Because the gap between PD and PS is 45 at Q = 300 in Problem 11.1, that is the post 

tax equilibrium.  Total taxes = 13,500.  

 b. Consumers pay (140 – 120)(300) = 6,000 (46%)  

  Producers pay (120 – 95)(300) = 7,500 (54%)  

 c. Excess burden = Deadweight Loss = 2250 from 11.1 part b.  

 d. QD = 2250 – 15 PD = 4PS – 80 = 4(PD – 45) – 80  

  19PD = 2460  PD = 129.47  PS = 84.47  

  Q = 258 tax = 11,610 

  Consumers pay 258(129.47 – 120) = 2,443 (21%)  

  Producers pay 258(120 – 84.47) = 9,167 (79%)  
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 e. QD = 1000 – 5PD = 10(PD – 45) – 800  

  2250 = 15PD  PD = 150    PS = 105  

  Q = 250 Total tax = 11,250  

  Consumers pay 250(150 – 120) = 7500 (67%)  

  Producers pay 250(120 – 105) = 3750 (33%)  

 f. Elasticities in the three cases are  

  Part a eD = – 5(140/300) = – 2.3   eS = 4(95/300) = 1.3  

  Part d eD = – 15(129/258) = – 7.5   eS = 4(84/300) = 1.12  

  Part e eD = – 5(150/250) = – 3.0     eS = 10(105/250) = 4.20  

  Although these elasticity estimates are only approximates, the calculations clearly 

show that the relative sizes of the elasticities determine the tax  burden.  

 

11.6 a. With tax PD = PS + 3  

  1100 – 50PD = 100PS – 1000 = 100(PD – 3) – 1000  

  150PD = 2400 PD = 16  PS = 13  

  Q = 300 Total tax = 900  

 b. Consumers pay 300(16 – 14) = 600 

  Producers pay 300(14 – 13) = 300  

 c. PS = .5(300)(13 – 10) = 450, a loss of 350 from Problem 11.2 part d.  

  Short-run profits = 13(300) – 100C  

  C = .5(3)
2
 + 30 + 5 = 39.5  

  π = 3900 – 3950 = – 50.  

  Since total profits were 300, this is a reduction of 350 in short-run profits. 

 

11.7 a. With tax PD = PS + 5.5  

  PS = 10 + .002Q  

  PD = 15.5 + .002Q  

  Q = 1050 – 50(15.5 + .002Q) = 275 – .1Q  

  1.1Q = 275 Q = 250   PD  = 16 r = 0.5  

  Total tax = 5.5(250) = 1,375  

  Demanders pay 250(16 – 11) = 1,250  

  Producers pay 250(11 – 10.5) = 125  
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 b. CS originally = .5(500)(21 – 11) = 2,500  

  CS now = .5(250)(21 – 16) = 625  

  PS originally = .5(500)(11 – 10) = 250  

  PS now = .5(250)(10.5 – 10) = 62.5  

 c. Loss of rents = .5(250) + .5(250)(.5) = 187.5  

  This is the total loss of PS in part b.  Occurs because the only reason for upward-

sloping supply is upward slope of film royalties supply.  

 

11.8 a. Domestic Equilibrium 150P = 5000 – 100P  

  P = 20 Q = 3000 (i.e., 3 million)  

 b. Price drops to 10, QD  = 4000  

  Domestic production is 150(10) = 1500.  

  Imports = 2500.  

 c. Price rises to 15, QD  = 3500  

  Domestic production = 150(15) = 2250.  

  Imports = 1250 Tariff revenues = 6250.  

  CS with no tariff = .5(4000)(50 – 10) = 80,000 

  CS with tariff     = .5(3500)(50 – 15) = 61,250 

  Loss = 18,750 

  Transfer to producers = 5(1500) + .5(2250 – 1500)(15 – 10) = 9,375 

  Deadweight loss = Total loss – Tariffs – Transfer = 3,125 

  Check by triangles 

  Loss = .5(2250 – 1500)(5) + .5(4000 – 3500)(5) = 1875 + 1250 = 3125   

 d. With quota of 1250, results duplicate part c except no tariff revenues are collected.  

Now 6250 can be obtained by rent seekers.  

 

11.9  Price now rises to 9.6.   

QD = 13.25  

QS = 12.48.  Hence imports fall to 0.77.  Total tariff revenues are .462 (billion), a 

decline from the case in Example 11.3. The deadweight losses increase dramatically, 

however:  

  DW1 = .5(.6)(14.3 – 13.25) = .315  

  DW2 = .5(.6)(12.48 – 11.7) = .234  

  DW1 + DW2 = .549, an increase of 37 percent from the total loss calculated in 

Example 11.3.  
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11.10 a. In the graph D is the demand for importable goods, SD is the domestic supply curve 

and SD+F  is the supply curve for domestic and foreign goods. Domestic Equilibrium 

is at E1 , free trade equilibrium is at E2.  Imports are given by
2 3

.   Q Q   

    

 b. A tariff shifts SD+F  to S'D+F  =   Equilibrium is at E3.  Imports fall and quantity 

supplied domestically increases.  

 c., d. Losses of consumer surplus can be illustrated in much the same way as in the 

infinitely elastic supply case.  Gains of domestic producer surplus can also be shown 

in a way similar to that used previously.  In this case, however, some portion of tariff 

revenue is paid by the foreign producers since the price rise from P2 to P3 is less than 

the amount of the tariff (given by the vertical distance between S'D+F and SD+F).  

These tariffs may partly affect the deadweight losses of domestic consumer surplus.  
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CHAPTER 12 
 

GENERAL EQUILIBRIUM AND WELFARE 
 

 

The problems in this chapter focus primarily on the simple two-good general equilibrium model 

in which “supply” is represented by the production possibility frontier and “demand” by a set of 

indifference curves. Because it is probably impossible to develop realistic general equilibrium 

problems that are tractable, students should be warned about the very simple nature of the 

approach used here. Specifically, none of the problems does a very good job of tying input and 

output markets, but it is in that connection that general equilibrium models may be most needed.   

The Extensions for the chapter provide a very brief introduction to computable general 

equilibrium models and how they are used. 

 Problems 12.1–12.5 are primarily concerned with setting up general equilibrium 

conditions whereas 12.6–12.10 introduce some efficiency ideas. Many of these problems can be 

best explained with partial equilibrium diagrams of the two markets. It is important for students 

to see what is being missed when they use only a single-good model. 

  

Comments on Problems 

 

 

12.1 This problem repeats examples in both Chapter 1 and 12 in which the production 

possibility frontier is concave (a quarter ellipse). It is a good starting problem because it 

involves very simple computations. 

 

12.2 A generalization of Example 12.1 that involves computing the production possibility 

frontier implied by two Cobb-Douglas production functions. Probably no one should try 

to work out all these cases analytically. Use of computer simulation techniques may offer 

a better route to a solution (it is easy to program this in Excel, for example). It is 

important here to see the connection between returns to scale and the shape of the 

production possibility frontier. 

 

12.3 This is a geometrical proof of the Rybczynski Theorem from international trade theory. 

Although it requires only facility with the production box diagram, it is a fairly difficult 

problem. Extra credit might be given for the correct spelling of the discoverer’s name. 

 

12.4 This problem introduces a general equilibrium model with a linear production possibility 

frontier. The price ratio is therefore fixed, but relative demands determine actual 

production levels. Because the utility functions are Cobb-Douglas, the problem can be 

most easily worked using a budget-share approach. 

 

12.5 This is an introduction to excess demand functions and Walras’ Law. 
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12.6 This problem uses a quarter-circle production possibility frontier and a Cobb-Douglas 

utility function to derive an efficient allocation. The problem then proceeds to illustrate 

the gains from trade. It provides a good illustration of the sources of those gains. 

 

12.7 This is a fixed-proportions example that yields a concave production possibility frontier. 

This is a good initial problem although students should be warned that calculus-type 

efficiency conditions do not hold precisely for this type of problem. 

 

12.8 This provides an example of efficiency in the regional allocation of resources. The 

problem could provide a good starting introduction to mathematical representations of 

comparative versus absolute advantage or for a discussion of migration. To make the 

problem a bit easier, students might be explicitly shown that the production possibility 

frontier has a particularly simple form for both the regions here (e.g., for region A it is  
2 2 100x y  ). 

 

12.9 This problem provides a numerical example of an Edgeworth Box in which efficient 

allocations are easy to compute because one individual wishes to consume the goods in 

fixed proportions. 

 

12.10 A continuation of Problem 12.9 that illustrates notions of the core and exchange offer 

curves. 

 

 

Solutions 

 

12.1 a.  

 b. 9x
2
 = 900; x = 10, y = 20 

 c. If x = 9 on the production possibility frontier, 

  
819

20.24
2

y       

  If x = 11 on the frontier, 
779

19.74 .
2

y        
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  Hence, RPT is approximately 
( 0.50)

.25
2

y
      .

x

  
  


 

12.2 I have never succeeded in deriving an analytical expression for all these cases. I have, 

however, used computer simulations (for example with Excel) to derive approximations 

to these production possibility frontiers. These tend to show that increasing returns to 

scale is compatible with concavity providing factor intensities are suitably different (case 

[e]), but convexity arises when factor intensities are similar (case [d]). 

12.3 a. Draw the production possibility frontier and the Edgeworth box diagram. Find where 

P line is tangent to PPF; then go back to the box diagram to find input ratio. See Corn 

Law Debate example in the text. 

 b. P given, land/labor ratio is constant. 

   

  Equilibrium moves from E to E '. 

  Cloth   (OC E' > OC E)     Wheat   (OW'E' < OWE) 

12.4 a. 3 2x yp p   

 b. If wage = 1, each person’s income is 10. Smith spends 3 on x, 7 on y.  

  Jones spends 5 on x, 5 on y. 

  Since 20 ,
2 3

x y
        and demands are 

8 12
,

yx

x    y  
pp

   

  we have 
8 12 8 12

20, or
2 3 2 2 xx y x

         
p p p P

    1 2, 1 3x yp p   

  So Smith demands 6x, 21y. 

  Jones demands 10x, 15y. 

 c. Production is x = 16, y = 36. 

  20 hours of labor are allocated: 8 to x production, 12 to y production. 

12.5 a. Functions are obviously homogeneous of degree zero since doubling of p1, p2 and p3 

does not change ED2 or ED3. 

 b. Walras’s Law states   0ii

i

     p ED   

  Hence, if ED2 = ED3 = 0, p1ED1 = 0 or ED1 = 0. 
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  Can calculate ED1 as  p1ED1 = –p2ED2 – p3ED3  

  
2 2 2

1 12 2 3 3 1 2 1 3
[3 6 2 2 ]/ .ED         p  p p p p p p p p      

  Notice that ED1 is homogeneous of degree zero also. 

 c. ED2 = 0 and ED3 = 0 can be solved simultaneously for p2 /p1 and p3 /p1 . 

  Simple algebra yields  p2 /p1 = 3        p3 /p1 = 5. 

  If set p1 = 1 have p2 = 3, p3 = 5 at these absolute prices 

  ED1 = ED2 = ED3 = 0. 

12.6  PPF =   f
2
 + c

2
 = 200 

  
dc f

RPT =  = 
df c

   
0.5

0.5

U/ f  U/f c
MRS =  =  = 

U/ c  U/c f

 

 
 

 a. For efficiency, set MRS = RPT      or  f c c f f c   

  PPF:  2c
2
 = 200, c = 10 = f = U,   RPT = 1. 

 b. Demand:  PF /PC = 2/1 = MRS = c/f   so  c = 2f. 

  Budget:  2f + 1c = 30 the value of production. Substituting from the demand equation: 

4f = 30     f = 30/4, c = 15. 

  15 30 / 4 112.5U         ;  an improvement from (a) (the "demand effect"). 

 c. Set RPT = 2/1     f = 2c. 

  PPF:  5c
2
 = 200,  40 , 160c    f      

  Budget now is:  2 160 1 40 5 40 10 10          

  Spend 5 10 on  and 5 10 on  . f c  

  
5 10

5 10 , 125 :
2

c        f        U       

  A further improvement ("the production specialization effect") 
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 d.  

 

12.7 f = Food c = Cloth 

 a. Labor constraint     f + c = 100 (see graph below) 

 b. Land constraint     2f + c = 150 (see graph below) 

 c. Heavy line in graph below satisfies both constraints. 

 d. Concave because it must satisfy both constraints. Since the RPT = 1 for the labor 

constraint and 2 for the land constraint, the production possibility frontier of part (c) 

exhibits an increasing RPT; hence it is concave. 

 e. Constraints intersect at f = 50, c = 50. 

  f < 50    1  so 1
f

c

pdc
        

df p
     

  f > 50     2 so 2
f

c

pdc
         

df p
    

 f. If for consumers 
5 5

so .
4 4

f

c

pdc
          

df p
    

 g. If pf /pc = 1.9 or pf /pc = 1.1, will still choose f = 50, c = 50 since both price lines 

“tangent” to production possibility frontier at its kink. 

 h. .8f + .9c = 100 

  Capital constraint: c = 0   f = 125  f = 0   c = 111.1 
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  Same PPF since capital constraint is nowhere binding. 

 

12.8 a. 
2 22 2, , 100

A AA AA Ay yx xA A
                 y yx xL L L L       

  Same for region 
22so 4 4 100B B

B      yx    

 b. RPT’s should be equal. 

 c. BA
A B

A B

dy x dy x
 =   =       =   = RPT RPT

dx y dx y
   

  Therefore,   A B

A B

x x
 = 

y y
 , hence 

2
2 2 B

AA 2
B

y
 =    .y x

x

 
 
 

 

  But 
2 22 24( )A BA B

       y yx x    so substituting for 2
AY  yields 

  

2 2

2 2

2 2
1 4 1B B

A B

B B

y y
       x x

x x

   
     

   
 

  xA = 2xB     also yA = 2yB 

  2 23 9T A B B T B             x x x x x x     

  
2 2

3 9
T A B B T B
             y y y y y y     

  
2 22 29( ) 9 100/ 4 225T BT B

          y yx x       

  If 212 144 225 14 9T T T
                yx x      

  Note:  Can also show that more of both goods can be produced if labor could move 

between regions.  
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12.9   

 a. Contract curve is straight line with slope of 2. The only price ratio in equilibrium is 3 

to 4 (pc to ph). 

 b. 40h, 80c is on C.C. Jones will have 60h and 120c. 

 c. 60h, 80c is not on C.C. Equilibrium will be between 40h, 80c (for Smith) and 48h, 

96c (for Smith), as Jones will not accept any trades that make him worse off.  

UJ = 4(40) + 3(120) = 520. This intersects the contract curve at 520 = 4(h) + 3(2h),  

h = 52, c = 104. 

 d. Smith grabs everything; trading ends up at OJ on C.C. 

 

12.10 (for diagram, see Problem 12.9) 

 a. Core is OS, OJ between points A and B. 

 b. Offer curve for Smith is portion of OS OJ above point A (since requires fixed 

proportions). For Jones, offer curve is to consume only C for pc/ph < 3/4 and consume 

only h for pc/ph > 3/4. For pc/ph = 3/4, offer curve is the indifference curve UJ. 

 c. Only equilibrium is at point B. pc/ph = 3/4 and Smith gets all the gains from trade--the 

benefits of being inflexible. 
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CHAPTER 13 
 

MONOPOLY 
 

The problems in this chapter deal primarily with marginal revenue-marginal cost calculations in 

different contexts. For such problems, students’ primary difficulty is to remember that the 

marginal revenue concept requires differentiation with respect to quantity. Often students choose 

to differentiate total revenue with respect to price and then get very confused on how to set this 

equal to marginal cost. Of course, it is possible to phrase the monopolist’s problem as one of 

choosing a profit-maximizing price, but then the inverse demand function must be used to derive 

a marginal cost expression. The other principal focus of some of the problems in this chapter is 

consumer’s surplus. Because the computations usually involve linear demand curves, they are 

quite straightforward. 

 

Comments on Problems 

 

13.1 A simple marginal revenue–marginal cost and consumer surplus computation. 

13.2 An example of the MR = MC calculation with three different types of cost curves. 

13.3 An example of the MR = MC calculation with three different demand and marginal 

revenue curves. Illustrates the “inverse elasticity” rule.  

13.4 Examines graphically the various possible ways in which shift in demand may affect the 

market equilibrium in a monopoly. 

13.5 Introduces advertising expenditures as a choice variable for a monopoly. The problem 

also asks the student to view market price as the decision variable for the monopoly. 

13.6 This problem examines taxation of monopoly output. It shows that some results from 

competitive tax-incidence theory do not carry over. 

13.7 A price discrimination example in which markets are separated by transport costs. The 

problem shows how the price differential is constrained by the extent of those costs. Part 

d asks students to consider a simple two-part tariff. 

13.8 A marginal revenue-marginal cost computation for the case in which monopolist’s costs 

exceed those of a perfect competitor. The problem suggests that the social losses from 

such increased costs may be of the same order of magnitude as the deadweight loss from 

monopolization. 

13.9 This problem examines some issues in the design of subsidies for a monopoly.  

13.10 A problem involving quality choice. Shows that in this case, monopolist’s and 

competitive choices are the same (though output levels differ). 
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Solutions 
 

13.1 a.  P = 53 – Q        PQ = 53Q –Q
2
 

  MR = 53 – 2Q = MC = 5 

   Q = 24,   P = 29,   π = (P – AC)  Q = 576 

 b. MC = P = 5        P = 5,  Q = 48 

 c. Competitive Consumers' Surplus = 2(48)
2
 = 1152. 

  Under monopoly: 

   

  Notice that the sum of consumer surplus, profits, and deadweight loss under 

monopoly equals competitive consumer surplus. 

 

13.2 Market demand Q = 70 –P,  MR = 70 –2Q. 

 a. AC = MC = 6. To maximize profits set MC = MR. 

   6 = 70 – 2Q     Q = 32 P = 38 

   π = (P – AC)   Q = (38 –6)   32 = 1024 

 b. C = .25Q
2
 – 5Q + 300,  MC = .5Q – 5.   Set MC = MR 

.5Q – 5 = 70 – 2Q     Q = 30       P = 40 

  π = TR – TC = (30)(40) – [.25(30)
2 

–5 (30) + 300] = 825. 

 c. C = .0133Q
3
 – 5Q + 250. MC = .04Q

2
 – 5 

  MC = MR      

  Therefore:  04Q
2
 – 5 = 70 –2Q  or   

.04Q
2 

+ 2Q – 75=0. 

  Quadratic formula gives Q = 25. 

  If Q = 25, P = 45 

    R = 1125 

    C = 332.8   (MC = 20)    π = 792.2 
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13.3 a. AC = MC = 10, Q = 60 –P, MR = 60 – 2Q. 

  For profit maximum, MC = MR        10 = 60-2Q   Q = 25    P = 35     

    π = TR – TC = (25)(35) – (25)(10) = 625. 

 b. AC = MC = 10, Q = 45 – 5P, MR = 90 – 4Q. 

  For profit maximum, MC = MR        10 = 90 – 4Q  Q = 20    P = 50 

  π  = (20)(50) – (20)(10) = 800. 

 c. AC = MC = 10, Q = 100 – 2P, MR = 50 – Q. 

  For profit maximum, MC = MR   10 = 50 – Q   Q = 40    P = 30. 

  π  = (40)(30) – (40)(10) = 800. 

  Note:  Here the inverse elasticity rule is clearly illustrated: 

  Problem Part  
Q,P

Q P 1 P  MC
e =            = 

P Q Pe

  



 

    a  –1(35/25) = –1.4     .71 = (35 – 10)/35 

    b  –.5(50/20) = –1.25  .80 = (50 – 10)/50 

    c  –2(30/40) = –1.5     .67 = (30 – 10)/30 

 

 d.  

  The supply curve for a monopoly is a single point, namely, that quantity-price 

combination which corresponds to the quantity for which MC = MR. Any attempt to 

connect equilibrium points (price-quantity points) on the market demand curves has 

little meaning and brings about a strange shape. One reason for this is that as the 
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demand curve shifts, its elasticity (and its MR curve) usually changes bringing about 

widely varying price and quantity changes. 

 

13.4 a.  

  

 b. There is no supply curve for monopoly; have to examine MR = MC intersection 

because any shift in demand is accompanied by a shift in MR curve. Case (1) and case 

(2) above show that P may rise or fall in response to an increase in demand. 

 c. Can use inverse elasticity rule to examine this 

  . 
 MR P

P
 = 

 MC P

P
 = e


  

  As – e   falls toward 1 (becomes less elastic), P –MR increases. 

  Case 1  MC constant so profit-maximizing MR is constant 

  If  ,e P MR P     . 

  If   constant, constant, constante P MR P   

  If   , ,e P MR P     . 

  Case 2  MC   falling so profit-maximizing MR falls:  

  If  ,   may rise or falle P MR P      

  If   constant, constant,e P MR P    

  If    , ,e P MR P       

  Case 3  MC rising so profit-maximizing MR must increase 

  If   ,e P MR P          

  If    constant, constant, ,e P MR MR P     

  If    ,   may rise or falle P MR P     
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13.5 Q = (20 – P)(1 + .1A – .01A
2
) 

 Let K = 1 + .1A + .01A
2
    .1 .02

dK
    A

dA
   

 π = PQ – C = (20P – P
2
)K – (200 – 10P)K – 15 – A 

 
P


 = (20 – 2P)K + 10K = 0.    

 a. 20 – 2P = –10        P = 15   regardless of K or A 

  If A = 0, Q = 5, C = 65       π =  10 

 b. If P = 15,    = 75K – 50K – 15 – A = 25K – 15 – A = 10 + 1.5A – 0.25A
2 

  1.5 0.5 0 3  A     so  A  
A


   


 

  Q = 5(1 + .3 – .09) = 6.05 

  PQ = 90.75        C = 60.5 + 15 + 3 = 78.5 

   π = 12.25; this represents an increase over the case A = 0. 

13.6 The inverse elasticity rule is (1 1 )P MC e  . When the monopoly is subject to an ad 

valorem tax of t, this becomes 
1

1(1 ) 1

MC
P

t

e

 
 

.  

 a. With linear demand, e falls (becomes more elastic) as price rises. Hence, 

1 1

1 1(1 ) (1 ) (1 )1 1

pretax

aftertax

aftertax pretax

PMC MC
P

t t t

e e

    
   

 

 b. With constant elasticity demand, the inequality in part a becomes an equality so 

/(1 )after tax pretaxP P t  . 

 c. If the monopoly operates on a negatively sloped portion of its marginal cost curve we 

have (in the constant elasticity case) 

1 1

1 1(1 ) (1 ) (1 )1 1

aftertax pretax pretax

aftertax

MC MC P
P

t t t

e e

    
   

 . 

 d. The key part of this question is the requirement of equal tax revenues. That is, 

a a stP Q Q where the subscripts refer to the monopoly’s choices under the two tax 

regimes. Assuming constant MC, profit maximization requires 

   
1 1

(1 )
1 1

1 1
a sMC P t P

e e

     

 

. Combining this with the  revenue neutrality 

condition shows s aP P . 
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13.7 a.  Q1 = 55 – P1     R1 = (55 – Q1)Q1 = 55Q1 –
2

1
Q   

  MR1 = 55 – 2Q1 = 5     Q1 = 25, P1 = 30 

   Q2 = 70 – 2P2     
22

2 2 2 2

70
(70 ) / 2

2

  Q
        Q Q QR

 
    
 

 

MR = 35 – Q2 = 5    Q2 = 30, P2 = 20 

   π = (30 – 5)25 + (20 – 5)30 = 1075 

 b. Producer wants to maximize price differential in order to maximize profits but 

maximum price differential is $5. So  P1 = P2 + 5. 

   π  = (P1 – 5)(55 – P1) + (P2 – 5)(70 – 2P2) 

  Set up Lagrangian 1 2? 5 )P P      

   

1

1

2

2

1 2

£
60 2 0

£
80 4 0

£
5 0

        P
P

P
P

P P








   




   




   



 

  Hence  60 – 2P1 = 4P2 – 80 and P1 = P2 + 5. 

  130 = 6P2    P2 = 21.66   P1 = 26.66  1058.33                                      

 c. P1 = P2  So  π = 140P – 3P
2
 – 625    

P


 = 140 – 6P = 0 

  P = 
140

6
 = 23.33     Q1 = 31.67     Q2 = 23.33  π = 1008.33 

 d. If the firm adopts a linear tariff of the form ( ) ii i
T     Q mQ   , it can maximize profit 

by setting m = 5, 

   α1 = .5(55 – 5)(50) = 1250 

   α2 = .5(35 – 5)(60) = 900 

   and π = 2150. 

  Notice that in this problem neither market can be uniquely identified as the “least 

willing” buyer so a solution similar to Example 13.5 is not possible. If the entry fee 

were constrained to be equal in the two markets, the firm could set m = 0, and charge 

a fee of 1225 (the most buyers in market 2 would pay). This would yield profits of 

2450 – 125(5) = 1825 which is inferior to profits yielded with T(Qi). 

13.8 a. For perfect competition,  MC = $10.  For monopoly     MC = $12. 

  QD = 1000 – 50P. The competitive solution is  P = MC = $10. Thus Q =  500. 
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  Monopoly:  P = 20 –
1

50
 Q,  PQ = 20Q – 

1

50
 Q

2
  

  Produce where MR = MC. MR = 20 – 
1

25
 Q = 12. Q = 200, P = $16 

 b. See graph below. 

  Loss of consumer surplus = Competitive CS – monopoly CS  = 

    2500 – 400 = 2100. 

 c.  

 

  Of this 2100 loss, 800 is a transfer into monopoly profit, 400 is a loss from increased 

costs under monopoly, and 900 is a “pure” deadweight loss. 

13.9 a. The government wishes the monopoly to expand output toward P = MC. A lump-sum 

subsidy will have no effect on the monopolist's profit maximizing choice, so this will 

not achieve the goal. 

 b. A subsidy per unit of output will effectively shift the MC curve downward. The figure 

illustrates this for the constant MC case. 

 

 c. A subsidy (t) must be chosen so that the monopoly chooses the socially optimal 

quantity, given t. Since social optimality requires P = MC and profit maximization 

requires that MR = MC – t =   

   
1

1P    
e

 
 

 
 , 
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  substitution yields 
1t

   
P e
    as was to be shown. 

  Intuitively, the monopoly creates a gap between price and marginal cost and the 

optimal subsidy is chosen to equal that gap expressed as a ratio to price. 

13.10 Since consumers only value X  Q, firms can be treated as selling that commodity (i.e., 

batteries of a specific useful life). Firms seek to minimize the cost of producing X  Q for 

any level of that output. Setting up the Lagrangian, ? ) ( )C X Q K XQ   yields the 

following first order conditions for a minimum: 

  
£

 = C (X)Q   Q = 0
X




 


 

  
£

 = C (X)   X  = 0
Q







 

  
£

 = K  XQ = 0






 

 Combining the first two shows that C(X) – C'(X)X = 0 or  
C  (X)

X = 
C (X)

 . 

 Hence, the level of X chosen is independent of Q (and of market structure). The nature of 

the demand and cost functions here allow the durability decision to be separated from the 

output-pricing decision. (This may be the most general case for which such a result holds.) 
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CHAPTER 14 
 

TRADITIONAL MODELS OF IMPERFECT COMPETITION 
 

 

The problems in this chapter are of two types: analytical and essay. The analytical problems look 

at a few special cases of imperfectly competitive markets for which tractable results can be 

derived. Some of these results (especially those in Problems 14.4, 14.5, and 14.6) are quite 

important in the industrial organization literature. The essay problems in the chapter (14.3 and 

14.8) do not offer such definitive results but instead ask students to think a bit more broadly 

about some institutional issues in industrial organizations. 

 

 

Comments on Problems 

 

14.1 This is a simple duopoly problem that duplicates Example 14.1 with different numbers. 

 

14.2 A problem providing numerical solutions for monopoly and Cournot equilibria for the 

simple linear demand curve and constant marginal cost case. The problem shows that in 

this case the competitive solution (P = 5) is the limit of the Cournot outcomes as the 

number of firms approaches infinity. 

 

14.3 An essay-type question that seeks to explore some purported empirical observations in 

various markets. 

 

14.4 A problem that shows the derivation of the ―Dorfman-Steiner‖ conditions for optimal 

spending on advertising. 

 

14.5 The problem shows that the widely-used Herfindahl Index is correlated with industry 

profitability, if the firms in industry follow Cournot pricing strategies. 

 

14.6 A problem based on Salop’s ―circular‖ model of demand. This is a very useful model 

both for spatial applications and for looking at issues in product differentiation. 

 

14.7 This problem provides a numerical example of price leadership. Construction of the net 

demand curve provides a good illustration of the assumptions behind the behavior of the 

―competitive fringe.‖ 

 

14.8 An essay question about monopoly and innovation. The question is a very complex one 

in reality though the solutions provide Fellner’s suggested simple answer to the problem. 

This might be contrasted to Schumpeter’s views which are summarized at the end of  

Chapter 13. 

 

14.9 An example of contestability in the natural monopoly context. Computations here do not 

work evenly—for an approximation, see the solutions below. 
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Solutions 

 
 

14.1 Q = 150 – P          MC = 0 

 a. A zero cost monopolist would produce that output for which MR is equal to 0  

(MR = MC = 0). MR = 0 at one half of the demand curve’s horizontal intercept. 

Therefore,  Q = 75     P = 75   π = 5625 

 b. q1 + q2 = 150 –  P 

  Demand curve for firm 1:  q1 = (150 – q2) – P 

  Profit maximizing output level:  2

1

150

2

  q
  q


  

  Demand curve for firm 2:  q2 = (150 – q1) – P 

  Profit maximizing output level:  1

2

150

2

  q
  q


  

  Market equilibrium:  q1 = [150 – (150 –  q1)/2] –  2 

  1 1

1

150 75 / 2
37.5

2 4

     q q
      q

 
    

  4q1 = 150 + q1  3q1 = 150   q1 = 50, q2 = 50, P = 50 

  π1 = π2 = $2,500. πtotal = 5,000. 

 c. Under perfect competition, P = MC = 0. 

  Q = 150, P = 0, π = 0. 

   

14.2 a. Q = 53 – P     P = 53 – Q     PQ = 53Q – Q
2
 

  MR = 53 – 2Q = MC = 5     Q = 24, P = 29,  π = 576 

 b and c. P = 53 – q1 – q2     Pq1 = 53q1 – q1
2
 – q1q2 

  π = qq  q q48 = q5 Pq
21

2

1111
  
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1 2

1

48 2 0        q q
q


   


 

  q1 = (24 –  q2)/2          Similarly, q2 = (24 – q1)/2 

 d. q1 = (24 – q2 )/2 = (48– 24 + q1 )/4 = 6 + 1

4

q
 

  3/4 q1 = 6             q1 = 8 = q2 

 e. P = 37        π1 = π2 = 256        Total  π = 512 

 f. P = 53 – q1 – q2  . . . –  qn 

      
2

1 1 1 1 1

2

53 5
n

i

i

       q   q q q q


     

  Argue by symmetry:  q1 = q2 = . . . = qn. 

  π1 = 
2

1 1 1 1
53 ( 1) 5

i
     n    q q q q q      

  1

1
q




 = 48 – 2q1 – (n – 1)qi = 0 

  
1 i 1 1

( 1) 48
24 Let  =       = q q q

2 n + 1

i
n q

         q


   

 g. 53 48
1

n
P     

n  
 


 As , 5, 0.n P      

  The model yields competitive results as n gets large. 

 

14.3 a. Price leadership. 

 b. Product differentiation strategies. This facilitates price discrimination (assuming one 

model does not ultimately triumph because of network externalities). 

 c. Maintain market share; perhaps act as loss leader to help them sell other types of 

policies. May also just be improper accounting (insurance companies have a way of 

forgetting about the returns they make on their investments when making such 

statements). 

 d. Competition from the Japanese in the most likely answer—though the improvement 

in U.S. quality may be more fiction than fact. 

14.4 Total profits are given by π = pq(P,z) – g(q) – z. 

 First-order conditions for a maximum are 

 0
q q

  p   q  g    
p p p

  
   

  
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 1 0
q q

  p   g     
z z z

  
   

  
 

 Hence   

1

 q
' and   g  = 

  z  

q

q
p g  p

p



 
  

 
 

 Or   
1 /

.
/

q z
    

q q p

 
 

 
 

 

 Multiplication of this expression by z/p gives the required result. 

 

14.5 Equation 14.10 shows that under Cournot competition 

 
i

i

P
p +    MC = 0 .q

q





  

 With constant returns to scale, profits for the i
th

 firm are given by 

2

i i i

i

p
 = (p  MC  )  =  q q

q



 


 

 Dividing by total industry revenue (pq) yields 

 
2 1

.i

i

i

p
       q

pq pqq

 
  


    Multiplying by 

2

2

qp

qp
  yields 

       

2

2
,2

( )
/ .

( )

i
i q  p

i

pq p q
          e

pqpq



   


  (Note, here 

i

p p

q q

 


 
 ) 

 Summing over i gives 
,

i

q p

H
 = 

pq e


 

 

14.6 a. Because the circumference is 1.0 in length, firms are located at intervals of 1/n. What 

any one firm can charge (p) is constrained by what its nearest neighbor charges (p*). 

Let x represent the distance a buyer must travel (0 x 1/n). Travel cost to the first 

firm is tx, to its neighbor is t(1/n – x). Hence, the equation in the text must hold. 

 b. Because 
nt

pp
x

2

1

2

*



 , any one firm’s sales are 

nt

pp
x

1*
2 


 , total profits are 

given by 

  f
nt

pp
cp 













1*
)(  
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  and the first-order condition for a maximum is: 

  2/)/*(0
1*

)/1)(( ntcppor
nt

pp
tcp

p

















  

 c. Using the symmetry condition p = p* yields p = c + t/n. Intuitively, each firm charges 

marginal cost plus a distance-related charge. Any one firm could encroach on the 

other’s consumers by charging less than this, but the extra revenue gained would fall 

short of c. 

 d. Because each firm sells q = 1/n, .
22

f
n

t
f

n

c

n

t

n

c
TCpq     

 e.  Free entry yields a zero-profit equilibrium—hence 
f

t
n  . 

 f. Because marginal costs are a total of c, no matter how many firms there are, a social 

optimum would seek to minimize fixed costs plus distance costs: 

  

1/ 2

0

Total cost 2
4

n
t

s nf n txdx nf
n

     and these are minimized when 
f

t
n

4
  

which is indeed half the number calculated in part e. 

14.7 a. QD = – 2000P + 70,000 

  1000 firms        MC = q + 5 

  Price Taker:  set MC = P, q = P –  5 

  Total 
1000

1

1000 5000
S
    q  P  Q     

  At equilibrium, QD = QS: 

     – 2000P + 70,000 = 1000P – 5000 

      3000P = 75,000, P = $25, Q = 20,000. 

 b. Leader has MC = AC = 15. 

  Demand for Leader = – 2000P + 70,000 – QS (fringe) 

                   = – 2000P + 70,000 – (1000P – 5000) 

                   = – 3000P + 75,000. 

  Hence 25
3000

Q
P    


  ,  

2

25
3000

Q
PQ    Q


   

      25 15.
1500

Q
MR      MC   


     

  Therefore, Q for Leader = 15,000   P = 20    Total QD = 30,000. 
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 c.  

  Consumer Surplus 

  For P = 25     c.s. = 100,000 

  For P = 20     c.s. = 225,000 

  For P = 15     c.s. = 400,000 

 

14.8 Fellner gives the following analysis: 

 MRC = PC is demand facing competitive firm. 

 MR is the marginal revenue curve for the monopolist. 

 Innovation shifts MC to MC'. 

 Potential profits for competitive firms are CDAE. 

 For monopoly CDAB. 

 Hence, innovation is more profitable for the competitive firm. It is more likely to adopt 

the innovation. 

  

 This analysis neglects a variety of strategic issues about adoption and financing of new 

technology, however. 

 

14.9 a. Since 
50

0.1 20

C
MC

Q Q


 
 

is diminishing for Q > 200, this industry does exhibit 

decreasing average and marginal costs and therefore is a natural monopoly. 

 b. Since Q = 1000 – 50P, 
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  P = 20 – Q /50  PQ = 20Q – Q
2
/50 

  MR = 20 – Q /25. 

  Profit maximization requires 

  MR = 20 – Q /25 = MC = 50/(.1Q – 20) 

   – .004Q
2
 + 2.8Q – 400 = 50 

  Q
2
 – 700Q + 112,500 = 0. 

  Applying the binomial formula yields 
700 200

2

  
Q  


  so Q = 450 is the profit 

maximizing output.  

  At Q = 450, P = 11  

  R = 4,950  C = 500 ln25 = 1,609   π = 3,341. 

 c. To deter entry need P = AC 

  20 – Q/50 = 
500 ln (.1     20) Q

Q


 

  I have only been able to attain an approximate solution here. If Q = 880, P = 2.4,  

AC = 500 ln(68)/880 = 2.397. 

  This is the approximate contestable solution. Notice how far it is from the monopoly 

outcome. 
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CHAPTER 15 
 

GAME THEORY MODELS OF PRICING 

 

The first six problems for this chapter are intended to illustrate the concept of Nash equilibrium 

in a variety of contexts. Many of them have only modest economic content, but are traditional 

game theory problems. The remaining problems (15.7–15.12) in the chapter show how game 

theory tools can be applied to models of pricing. Many of these represent extensions or 

generalizations of the results illustrated in Chapter 14.  

  

 

Comments on Problems 

 

15.1 The classic “Stag Hunt” game attributed to Rousseau. The most interesting aspect of the 

game is the decline in the value of cooperation as the number of players expands. 

 

15.2 A simple game with continuous strategies in which there are multiple Nash equilibria. 

 

15.3 A continuation of Example 15.2 that shows how mixed strategy equilibria depend on the 

payoffs to “The Battle of the Sexes” game. 

 

15.4 This is a problem based on Becker's famous “Rotten Kid Theorem.”  The problem 

provides a good illustration of backward induction. 

 

15.5 The “Chicken” game. This game illustrates the importance of credible threats and pre-

commitments. 

 

15.6 An illustration of an auction game. A more detailed example from auction theory is 

provided in problem 15.12. 

 

15.7 An illustration of how competitive results do not arise in Bertrand games if marginal 

costs are not equal. 

 

15.8 This is an entry game with important first-mover advantages. 

 

15.9 This is a game theory example from the theory of cartels. Because the stable price is so 

low, cartels may seek enforcement mechanisms to maintain higher (non-stable) prices. 

 

15.10 This is an extension of Example 15.5. In this case, the firms must consider the expected 

value of profits when choosing trigger price strategies. 

 

15.11 This problem provides a numerical example of Bayesian Nash equilibrium in which 

demand (rather than costs) is uncertain for player B. 
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15.12 This is a problem in auction theory. The results from Example 15.9 are extended and 

Vickrey’s second-price auction is introduced. The mathematics here is a bit difficult, but 

the hints should help students through. 

 

Solutions 
 

15.1 a. Stag-Stag and Hare-Hare are both Nash equilibria. 

 b. Let p = Probability A plays stag. B's payoffs are 

  Stag 2p + 0(1 –  p) = 2p 

  Hare p + (1 – p) = 1 

  So Stag payoff > Hare if 2p > 1 or if p > 0.5. 

 c. B’s payoff to Stag with n players is 2p 
n– 1

 (since all must cooperate to catch a stag). 

Hence B will play stag if 2p 
n–  1

 > 1 or if p 
n–  1

 > 0.5. 

 

15.2 Payoffs are dA , dB if dA + dB –  100, and 0 if dA + dB > 100. All strategies for which  

dA + dB = 100 represent Nash equilibria since no player has an incentive to change given 

the other player's strategy. 

 

15.3 Using notation from Example 10.2, expected utility for A is 

 UA = 1 –  s + r [(K + 1)s – 1] 

 and for B 

 UB = K(1 – r) + s [(K + 1)s – K]. 

 Hence mixed strategy equilibrium is 

 s = 1/(K + 1)      r = K/(K + 1). 

 

15.4 This is solved through backward induction. Parent’s maximum for L requires 

0 = U  + U
’
A

’
B   

 Child's maximum choice of r is  0 = ) /dr dL + Y(  U
’
A

’
A  

 So  0 = /dr dL  Y
’
A   

 Differentiation of parent's optimum with respect to r yields 

0 = dL/dr) + Y( U + ) dL/dr  Y( U
’
A

’’
A

’
B

’’
B   

 but 0 = dL/dr + Y
’
A  from child maximum problem, so 0 = ) dL/dr  Y( U

’
B

’’
B   or 

Y = dL/dr ’
B  . 

 Hence, 0 = Y + Y
’
B

’
A  which is precisely the condition required for r to maximize total 

income. 
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15.5 a. There are two Nash equilibria here: 

  A: Chicken, B: Not Chicken; and A: Not Chicken, B: Chicken. 

 b. The threat “Not Chicken”; is not credible against a firm commitment by one's 

opponent to Not Chicken. 

 c. Such a commitment would achieve a desirable result assuming the opponent has not 

made such a commitment also. 

 d. The film appears to have a group of men trying to decide who will approach an 

attractive woman. If they all do, all will be rejected. But going first for everyone is 

the Nash equilibrium. Hence, there needs to be some sort of pre-game decision 

process to choose the first mover. 

 

15.6 a. Strategies here are continuous. A = 500.01 dominates any strategy in which A bids 

more. B = 500 dominates any strategy for which B bids more. Any other strategies are 

not dominant 

 b. The only Nash equilibrium here is A = 500.01, B = 500. 

 c. With imperfect information this becomes a Bayesian game. See Example 15.8 for a 

discussion.  

 

15.7 a. Here B’s optimal strategy is to choose a price slightly less than 10. This is a Nash 

equilibrium. With that price qA = 0, qB = 300. 

 b. πA = 0, πB = 600 

 c. This equilibrium is inefficient because P > MCB. Efficient allocation would have  

P = 8, qB = 340, πB = 0. 

 

15.8 a. This game has two Nash equilibria: 

  (1)  A = Produce, B = Don't Produce, and 

  (2)  A = Don't Produce, B = Produce. 

 b. If A moves first, it can dictate that Nash equilibrium (1) is chosen. Similarly, if B 

goes first, it can assure that Nash equilibrium (2) is chosen. 

 c. Firm B could offer a bribe of 1 to firm A not to enter (if it is A’s move first). But this 

would yield identical profits to those obtained when A moves first anyway. 

 

15.9 a. If owners act as a cartel, they will maximize total revenue = P  Q = 10,000P –  

1,000P 
2
 

  
dP

dPQ
 = 10,000 –  2,000P. 

  Hence, P = 5         Q = 5,000. 
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  For each owner, q = 250. 

  Revenues per firm = 1250. 

 b. P = 5 is unstable since if one firm sells 251, 

  Q= 5001     P = 4.999. 

  Revenue for the cheating firm = 1254.7 so chiseling increases revenues and profits 

for the single firm. 

 c. With a suitably low price, there will be no incentive to cheat. With P =.30, for 

example, Q = 9700 and q = 485. Revenues per firm = 145.50. 

  If q = 486     P = .299. 

  Revenue for the cheating firm = 145.31 so there is no incentive to cheat. 

  Notice that with fewer cartel members, this stable price is higher. With 2 firms, for 

example, if P = 3, Q = 7,000 and q = 3500. Revenues per firm = 10,500. 

  If q = 3501, P = 2.999. 

  Revenue for the cheating firm = 10,499.50 so there is no incentive to chisel. 

15.10 a. Monopoly price in expansions is P = 40, πe = 90,000. 

  In recessions, P = 20 πr = 10,000. 

  Hence, long-term expected profits from a trigger price strategy (under which price is 

set appropriately once demand conditions are known) are 50,000 per period. 

Sustainability requires that cheating during expansions be unprofitable 

 
50,000 1

90,000
2 1

    





 

  which holds for 

 δ > .72. 

 b. Lower δs will permit sustainability providing profits during expansions (πe) satisfy 

the condition 

 
10,000)0.5 ( 1

2 1

e
e

    
    










. 

  For δ = .7 (say), πe < 50,000 which requires the same price during expansions  

(P = 20) as recessions. 

 

15.11 Again, best to start by analyzing B’s situation. Denote the two demand situations by “1” 

and “2.” 

 1 (110 )B A B B
       q q q     

 2 (70 )B A B B
      q q q     . 
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 Hence, 

 
*

1
(110 ) / 2

B A
      q q   

 
*

2
(70 ) / 2

B A
     q q  . 

 Now 

 
1 2

.5(90 ) .5(90 )A A B A A B a
             q q q q q q        

 
1 2

(90 .5 .5 )
A B B A

       q q q q      

 so optimal qA is 

 
*

1 2
(90 .5 .5 ) / 2

A B B
       q q q    . 

 Solving the three optimal strategies simultaneously yields: 

 
*

30
A
  q    

*

1
40

B
  q    

*

2
20

B
  q  . 

 

15.12 a.  The hint follows because the probability of a bid less than v is in fact given by v 

because of the assumed distribution of v. Hence, the probability that n – 1 bids will be 

lower than v is given by v
n-1

 and this can occur for any of the n bidders.  

Hence f(v) = nv
n-1

. 

   



 

1

0

1

0

1

11
*)( |

n

n
v

n

n
dvnvvE nn  

  Hence, expected revenue is 
1

1

1

1











n

n

n

n

n

n
. 

 b.  The Vickrey scheme is “truth revealing” because each bidder has the incentive to bid 

his/her true value. If that true value were the highest, bidding it would not affect what 

is paid which is determined by the second highest bidder. On the other hand, if it is 

not the highest, might as well bid it anyway because won’t win the auction. 

 c.  Given the hint, 
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1
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1
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. 

  Notice that the difference in the auctions is not in the expected revenue, but in the fact 

that the Vickrey auction is truth revealing whereas the first bid auction is not. 
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CHAPTER 16 
 

LABOR MARKETS 
 

 

Because the subject of labor demand was treated extensively in Chapter 9, the problems in this 

chapter focus primarily on labor supply and on equilibrium in the labor market. Most of the labor 

supply problems (16.1–16.6) start with the specification of a utility function and then ask 

students to explore the labor supply behavior implied by the function. The primary focus of most 

of the problems that concern labor market equilibrium is on monopsony and the marginal 

expense concept (problems 16.7 – 16.10). 

 

Comments on Problems 

 

 

16.1 This is a simple algebraic example of labor supply that is based on a Cobb– Douglas 

(constant budget shares) utility function. Part (b) shows, in a simple context, the work 

disincentive effects of a lump-sum transfer—3/4 of the extra 4000 is ―spent‖ on leisure 

which, at a price of $5 per hour implies a 600 hour reduction in labor supply. Part (c) then 

illustrates a positive labor supply response to a higher wage since the $3000 spent on 

leisure will now only buy 300 hours. Notice that a change in the wage would not affect 

the solution to part (a), because, in the absence of nonlabor income, the constant share 

assumption assures that the individual will always choose to consume 6000 hours (= 3/4 

of 8000) of leisure. 

 

16.2 A problem using the expenditure function approach to study labor supply. Shows why 

income and substitution effects are precisely offsetting in the Cobb-Douglas case. 

 

16.3 A risk-aversion example that shows that wages must be higher on jobs with some 

uncertainty about the income stream promised if they are to yield the same utility as jobs 

with no uncertainty. The problem requires students to make use of the concepts of 

standard deviation and variance and will probably make little sense to students who are 

unfamiliar with those concepts. 

 

16.4 A problem in family labor supply theory. Introduces (in part [b]) the concept of ―home 

production.‖ The functional forms specified here are so general that this problem should 

be regarded primarily as a descriptive one that provides students with a general 

framework for discussing various possibilities. 

 

16.5 An application of labor supply theory to the case of means-tested income transfer 

programs. Results in a kinked budget constraint. Reducing the implicit tax rate on 

earnings (parts [f] and [g]) has an ambiguous effect on H since income and substitution 

effects work in opposite directions. 

 

16.6 A simple supply-demand example that asks students to compute various equilibrium 

positions. 
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16.7 An illustration of marginal expense calculation. Also shows that imposition of a 

minimum wage may actually raise employment in the monopsony case. 

 

16.8 An example of monopsonistic discrimination in hiring. Shows that wages are lower for 

the less elastic supplier. The calculations are relatively simple if students calculate 

marginal expense correctly. 

 

16.9 A bilateral monopoly problem for an input (here, pelts). Students may get confused on 

what is required here, so they should be encouraged first to take an a priori graphical 

approach and then try to add numbers to their graph. In that way, they can identify the 

relevant intersections that require numerical solutions. 

 

16.10 A numerical example of the union-employer game illustrated in Example 16.5. 

 

 

Solutions 
 

16.1 a. 8000 hrs/year @   $5/hr = $40,000/year 

  3/4  $40,000/yr = $30,000/yr at leisure. 

  
$30,000

$5
 = 6,000 hours of leisure. 

  Work = 2,000 hours. 

 b. 3/4  $44,000/yr = $33,000/yr at leisure. 

  
$33,000

$5
 = 6,600 hours of leisure. 

  Work = 1,400 hours. 

 c. Now, full income = $84,000. 

  3/4  $84,000 = $63,000. 

  Leisure = 6,300 hours; work = 1,700 hours. Hence, higher wage leads to more labor 

supply. Note that in part (a) labor supply is perfectly inelastic at 2,000 hours. 

 d.  
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16.2 a.  Setting up Lagrangian: 1? 4 ( )c wh w U c h        gives the following first 

order conditions: 

  

1 1

1

£
1 0

£
(1 ) 0

£
0

c h
c

w c h
h

U c h

 

 

 



 



 






  




   




  



 

  Combining the first two equations gives the familiar result: 
1

(1 )

h

w c







. 

  So 
1

wh
c







, and ( )   or  

1
U w h h Uk w   



  


 where 
(1 )

k






. 

  Similar substitutions shows 1 1c Uk w   . 

  Substituting for expenditures gives 
1 1 124 [ ] 24 24E c wh w Uw k k w Uw K w               

  Where 1K k k    . 

 b.  (1 ) 24c E
h Uw K

w

 
   


. 

 c. 24 48 (1 )c cl h Uw K       

  Clearly 1(1 ) 0
cl

UKw
w

   
  


. 

 d. The algebra is considerably simplified here by assuming 0.5, 2K    and using a 

period of 1.0 rather than 24. With these simplifications, 

0.5 12 0.5 0.5cl Uw l nw     . 1.50.5
cl

Uw
w





. Now letting n = E in the 

expenditure function and solving for utility gives 0.5 0.50.5 0.5U w nw  . Substituting 

gives 10.25   when 0
cl

w n
w


 


. Turning to the uncompensated function: 

11 1(0.5 0.5 )( 0.5 ) 0.25   when  0
l

l nw w w n
n

 
      


. Hence, the substitution and 

income effects cancel out. 

  (Note:  In working this problem it is important not to impose the n = 0  condition until 

after taking all derivatives.) 

16.3 2( ) 100 0.5U Y Y Y            Y = wl 

              job:  $5, 8-hour day   Y = 40, U = 3200 
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 E(U)job = 3200; to take new job, E(U)job2 > E(U)job1 

 

2 2

2

2

( ) (100 0.5 ) 800 0.5 ( )

800 0.5(var [ ( )] )

jobE U E Y Y w E Y

w Y E Y

   

  
 

 because Y = lw, E(Y) = 8w, sd(Y) = 6w  

 2 2

2( ) 800 0.5(36 64 ) 3200jobE U w w w     

 250 800 3200 0w w   . Use quadratic formula, get 8w  . 

16.4 a. 2

1

and 
w

1

2

h h
 

w

 

 
 are both probably positive because of the income effect. 

 b. 1 1( )c f h , so optimal choice would be to choose h1 so that 1'f w . This would 

probably lead person 1 to work less in the market. That may in turn lead person 2 to 

choose a lower level of h2 on the assumption that h1 and h2 are substitutes in the 

utility function. If they were complements, the effect could go the other way. Clearly 

one can greatly elaborate on this theory by working out all of the first-order 

conditions and comparative statics results. 

 

16.5 a. Grant = 6000 – .75(I) 

  If I = 0  Grant = 6000 

     I = 2000  Grant = 4500 

     I = 4000  Grant = 3000. 

 b. Grant = 0 when 6000 – .75I = 0 

   I = 6000/.75 = 8000 

 c. Assume there are 8000 hours in the year. 

  Full Income = 4 • 8000 = 32,000 = c + 4h. 

 d. Full Income = 32,000 + grant = 32,000 + 6000 – .75  4(8000 –  h)  =  

38,000 – 24,000 + 3h = c + 4h or   14,000 = c + h  for I – – 8,000. That is: for h > 

6,000 hours welfare grant creates a kink at 6,000 hours of leisure. 

 e.  
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 f. New budget constraint is 23,000 = c + 2h for h > 5,000. 

 g. Income and substitution effects of law change work in opposite directions (see graph). 

Substitution effect favors more work; income effect, less work. 

 

16.6 D:  L = – 50w + 450  S:  L = 100w 

 a. S = D 100w = – 50w + 450 w = 3, L = 300 

 b. D:  L = – 50(w – s) + 450  s = subsidy 

  w = 4 Ls = 400 = – 50(4 – s) + 450    s = 3 

  Total subsidy is 1200. 

 c. w = $4 D = 250 S = 400 u = 150 

 d.  

16.7 Supply:  l = 80w 
40

l

l
  ME   Demand:  l = 400– 40MRPl 

 a. For monopsonist MEl = MRPl  

  l = 400– 40MRPl    MRPl = 10 – 
40

l
 

  10 200
40 40

l l
         l      

  Get w from supply curve.
200

2.50 .
80 80

l
w           

 b. For Carl, the marginal expense of labor now equals the minimum wage, and in 

equilibrium the marginal expense of labor will equal the marginal revenue product of 

labor. wm = MEl = MRPl 

 Demand  Supply 

wm = $4.00 l = 400 – 40(4.00) l = 80(4.00) 

 l = 240 l = 320 

  If supply > demand, Carl will hire 240 workers, unemployment = 80. 
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 c.  

 d. Under perfect competition, a minimum wage means higher wages but fewer workers 

employed. Under monopsony, a minimum wage may result in higher wages and more 

workers employed. 

 

16.8  
3/ 2

2

9 3

m m
m m m

l l
         w w l   

  
0.5 20

10  so 400,
2 3

m
l l m m

l
              l wME MRP      

  
2

100 100

f f

f f f

l l
           w w l   

  10  so 500, 5 900
50

f

l f f T

l
                    l w lME       

  profits per hour on machinery = 9000 – 5(500) – 6.66(400) = 3833. 

  If same wage for men and women  w = MRPl = 10,  l = 1000 + 900 =1900. 

  Profits  per hour are now = 1900(10) – 10(1000) – 10(900) = 0. 

16.9 a. Since 2 2240 2 , 5 1200 10q x x R q x x      

  MRP for pelts = 1200 20 .
R

    x 
x


 


 

  Production of pelts 210 , 20x = l C wl x MC x    . 

  Under competition, price of pelts 20   and  x x xp MC x MRP p    

  x = 30    px = 600. 

 b. From Dan’s perspective, demand for pelts 1200 20xMRP x    

  R = px  x = 1200x – 20x
2
.  MR = 

R
 = 1200  40x

x





 

  Set MR = MC = 20x  x = 20    px = 800. 
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 c. From UF's perspective  supply of pelts = MC = 20x = px . total cost = px x = 20x
2
. 

x

C
 =  = 40x  .ME

x




 

  Profit maximization set MEx = 40x = MRPx = 1200 – 20x 

  x = 20    px = 400. 

 d. Both the monopolist and monopsonist agree on x = 20, but they differ widely on price 

to be paid. Bargaining will determine the result. 

   

 

16.10 a. As in Example 16.5, this is solved by backward induction. In the second stage of the 

game the employer chooses l to maximize  210l l wl  . 

  which requires   l = 5 –  w/2. 

  Union chooses w to maximize  25 0.5wl w w   

  so w* = 5, l* = 2.5  U* = 12.5, π* = 6.25. 

 b. With ' 4, ' 4, ' 16, ' 8.w l U      which is Pareto-superior to the contract in part a. 

 c. For sustainability, one needs to focus on the employer who has incentive to cheat if 

union chooses ' 4w   (profit maximizing l is 3, not 4). Since π(l = 3) = 9, the 

condition for sustainability is 8/(1 – δ) > 9 + 6.25δ/1 – δ) or  δ > 1/2.75 = 4/11 . 
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CHAPTER 17 
 

CAPITAL MARKETS 
 

 

The problems in this chapter are of two general types:  (1) those that focus on intertemporal 

utility maximization and (2) those that ask students to make present discounted value 

calculations. Before undertaking the PDV problems, students should be sure to read the 

Appendix to Chapter 17. That appendix is especially important for problems involving 

continuous compounding because students may not have encountered that concept before. 

Because the material on dynamic optimization is rather difficult, only one problem on it is 

included (17.10). 

 

 

Comments on Problems 

 

17.1 A graphic analysis of intertemporal choices. Illustrates the indeterminacy of the sign of 

the interest elasticity of current savings. Part (c) concerns intertemporal allocation with 

initial endowments in both periods. 

 

17.2 A present discounted value problem. I have found that the problem is most easily solved 

using continuous compounding (see below), but the discrete approach is also relatively 

simple. Instructors may wish to point out that the savings rate calculated here (22.5 

percent) is considerably above the personal savings rate in the United States. That could 

lead into a discussion of the possible effects of social security. 

 

17.3 A simple present discounted value problem that should be solved with continuous 

compounding.  

 

17.4 A traditional capital theory problem. Students seem to have difficulty in seeing their way 

through this problem and in interpreting the results. Hence, instructors may wish to allow 

some time for discussion of it. 

 

17.5 Further analysis of forestry economics shows how replanting costs affect PDV 

calculations. 

 

17.6 A discussion question that asks students to explore the logic of the U.S. corporate income 

tax. The case of accelerated depreciation is, I believe, a particularly effective example of 

the time value of money. 

 

17.7 A present discounted value example of life insurance sales tactics. Students tend to like 

this problem and, I’m told, some have even used its results when approached by actual 

salespeople.  

 

17.8 An intertemporal resource allocation example of the capital gains that arise from taxation 

of the capital gains from interest rate changes.  
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17.9 A resource economics problem that shows, with a finite resource, monopoly pricing 

options are severely constrained. 

 

17.10 A simple application of control theory to optimal savings decisions. Provides an 

alternative derivation of the ―Euler Equation.‖  Final parts of the problem illustrate the 

significance of intertemporal substitutability. 

 

 

 

Solutions 

17.1 a. 2
1 2 1? , )

1

c
  U c  c    W c   

  r

 

    
 

 

  
1 1

£
0

 U
      

c c


 
  

 
 

  
2 2

£
0

1

 U
      

c c   r

 
  

  
 

  Division of these first order conditions yields 1

2

1

U

c
r MRS

U

c




  





 

 b. 2 0
c

r





 because c2 is a normal good with price 

1

1  r
 . 1c

r




 is ambiguous because the 

substitution effect predicts 
1 0

c
  

r





 but the income effect predicts 

1 10 If   < 0
r

c c
  .  

r

 


 
, 

a fall in the price of c2 raises total spending on c2 raises total spending on c2. 

Therefore, demand for c2  is elastic. 

 c. Budget constraint has same slope as in part (a) and passes through c1 = y1, c2 = y2. If 

at optimal point c1
*
 > y1, the individual borrows in period 1 and repays in period 2. If 

c1
*
 < y1 individual saves in period 1 and uses savings in period 2. 

17.2 Use continuous time for simplicity. 

 .03 1.2

0 40 0

t

t
         y y y ye e      .03

0

t
t t
    sy sys e   

 Accumulated savings after 40 years 

 

40 40 40

.03(40 ) .03 .03(40 ) 1.2 1.2

0 0 0

0 0 0

40t t t
t    dt         dt       dt   sy sy sys e e e e e

        

 Present value of spending in retirement 
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20 20 .03

20
1.2 1.2.03 1.2 .03

0 040 0 0
0 0

.6 .6 .6 .6 (15.04)
.03

|
t

t t e
     dt       dt y e y ey ye e e



    
   

 For accumulated savings to equal PDV of dissavings, it must be the case that 

  
1.2

0

1.2

0

.6 (15.04) 9
0.225

40 40

y e
s

y e
    

 

17.3 
0.5 2 .15

2 .15

( ) ( .15) ( )
.05

( )

 t t

t t

f t       t e
    

f   t e

 



 
   

 .05 = t
–0.5

 –  .15        t
–0.5

 = .2  t = 25 years 

 

17.4 a. ( )rtPDV e f t  

  0 = )  re( )  f(t )  (t f  e = 
dt

dPDV t rt r  '  

  f'(t) –  rf(t) = 0          '( ) ( )r f t f t  at t
*
. 

  Since w paid currently, π = 0 requires *( )
rt

w e f t


  

 b. Value of a u 
 
year-old tree:  ( ) ( *)r t u rue f t we    

  we
ru

 grows at rate r, tree grows faster than r except at t
*
. 

  we
ru

 starts out above f(t) and f(t) catches up at t
*
. 

 c,d. 

* *

*

0 0

1*

0|
t rut

ruru rte t
V     du  w e du w     w  we we

r r
          

  So  rV = f(t*) – w 

 

17.5 a. Since 
2 ...  for 1

1

x
x x x

x
   


 

  [ ( ) ] [ /(1 )]rt rtV  w  f t   w         e e
      . 

      [ ( ) ] /( 1)rt w  f t   w     e      

 b. 
2

( 1) ' ( ) [ ( ) ]
/

( 1)

rt rt

rt

     f  t      f t      w   e re
dV dt  

    e

  



 

  So, for a maximum, 

      
2

'( ) [ ( ) ]
0

1 ( 1)

rt

rt rt

f t  f t      w  re
    

        e e


 

 
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[ ( ) ]

'( )
1

rt
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f  t     w   re
f t    

    e





 

  
( ) ] [ ( ) ] [ ( ) ]

1 1

rt

rt rt

f t     w   r f t      w      r f t      w  re
   

        e e

   
 

 
 

  
( ) [ 1] [ ( ) ] [ 1]

[ 1] [ 1] [ 1]

rt rt

rt rt rt

rf t       r f t      w  rw      e e
     

            e e e

  
  

  
 

  ( ) ( ) . rf t    rV t      

 c. The condition implies that, at optimal t*, the increased wood obtainable from 

lengthening t must be balanced by: (1) the delay in getting the first rotation’s yield; 

and (2) the opportunity cost of a one-period delay in all future rotations’ yield. 

 d. f(t) is asymptotic to 50 as t  . 

 e. t* = 100 years. This is not ―maximum yield‖ since tree always grows. 

 f. Now t* = 104.1 years. Lower r lengthens the growing period. 

 

17.6 a. Not at all, because there are no pure economic profits in the long run. 

 b. In long-run equilibrium: v = PK(r + d). Government taxes opportunity cost of capital. 

This raises v and provides an incentive to substitute labor for capital. 

 c. Tend to increase use of capital since there is a tax advantage in early years. Total 

taxes paid are equal, but timing of payments is different. Consequently, present value 

of tax liabilities under accelerated depreciation is less than under straight line. 

 d. If tax rate declines, tax benefits of accelerated depreciation are smaller. May reduce 

investment. 

 

17.7 PDVwhole life = 

4

.1

0

2,000 $6,304t   dt  e
   

 PDVterm     =  

35

.1

0

400 $3,879.t   dt   e
   

 The salesman is wrong. The term policy represents a better value to this consumer. 
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17.8  

 a. Current savings = I – c0
*
. 

 b. Once one-period bonds are purchased, fall in r causes budget constraint to rotate to I'. 

Increase in utility from U0 to U1 (point B) represents a capital gain. 

 c. Accrued capital gains are measured by the total increase in ability to consume c0 (this 

is the ―Haig-Simmons‖ definition of income)—measured by distance II'. 

 d. Realized capital gains are given by distance c0
*
cB that is the present value of one-

period bonds that must be sold to attain the new utility-maximizing choice of cB. 

 e. The ―true‖ capital gain is given by the value, in terms of c0, of the utility gain. That is 

measured by II". Notice that this is smaller than either of the ―gains‖ calculated in 

parts (c) or (d). Hence, the current practice of taxing realized gains, while more 

appropriate than full taxation of all accrued gains, still amounts to some degree of 

over-taxation because it neglects effects on c1 consumption opportunities. 

 

17.9 Final Pn implies a final MRn = pn(1 + 1/k) (where k is the elasticity of demand for oil). 

Logic of resource theory suggests MR must grow at rate r. Hence  

 0 (1 1/ ) .rn  rn
n n

          k  pe eMR MR
      If k is constant over time, this implies 

 00
/(1 1/ ) rn

n
        k     p p eMR

   , so competitive pricing must prevail. 

 

17.10 a. The augmented Hamiltonian for this problem is 

  
.

( ) ( ) tH  U c    w    rk    c  ke
        . 

  Differentiation with respect to c yields 

  / '( ) 0 t H  c  U c   e
      . 

  Differentiation with respect to k yields 

  
.

/ 0 H  k  r           . 

  Hence,  e = rt   and  '( )  t rtU c   e e
    ( )'( ) r    tU c   e

   
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 b. From (a), if r = ρ, c is constant. If r > ρ , U' must fall as t increases, so c must rise. 

Alternatively, if r < ρ , U' must rise over time, so c must fall. 

 c. If U (c) = ln c  U' = 1/c 

  so, ( )
0

r  tc   c e
  ; that is, c follows an exponential path (either rising or falling). 

 d. If ( ) /U c     c
  ,  1'( )    U c    c

    so 1 ( )
0

    r       t   c c e
     or [( ) /( 1)]

0
r         tc  c e

     

Because δ < 1, this gives the same qualitative predictions, but the growth rate 

(assuming r > ) of consumption now depends on δ too. The less substitutable are 

various periods’ consumption (the more negative is ), the slower will be 

consumption growth. If     (no substitution), c is a constant, as in the r = ρ case. 

 e. Because income is constant over this life cycle, wealth will be determined solely by 

consumption patterns. It will have a humped shape if consumption rises over time, 

but wealth will be negative if consumption falls over time (notice that the budget 

constraint here allows unlimited borrowing). 
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CHAPTER 18 
 

UNCERTAINTY AND RISK AVERSION 
 

 

Most of the problems in this chapter focus on illustrating the concept of risk aversion. That is, 

they assume that individuals have concave utility of wealth functions and therefore dislike 

variance in their wealth. A difficulty with this focus is that, in general, students will not have 

been exposed to the statistical concepts of a random variable and its moments (mean, variance, 

etc.). Most of the problems here do not assume such knowledge, but the Extensions do show how 

understanding statistical concepts is crucial to reading applications on this topic. 

 

 

Comments on Problems 

 

18.1 Reverses the risk-aversion logic to show that observed behavior can be used to place 

bounds on subjective probability estimates. 

 

18.2 This problem provides a graphical introduction to the idea of risk-taking behavior. The 

Friedman-Savage analysis of coexisting insurance purchases and gambling could be 

presented here. 

 

18.3 This is a nice, homey problem about diversification. Can be done graphically although 

instructors could introduce variances into the problem if desired. 

 

18.4 A graphical introduction to the economics of health insurance that examines cost-sharing 

provisions. The problem is extended in Problem 19.3.   

 

18.5 Problem provides some simple numerical calculations involving risk aversion and 

insurance. The problem is extended to consider moral hazard in Problem 19.2.   

 

18.6 This is a rather difficult problem as written.  It can be simplified by using a particular 

utility function (e.g., U(W) = lnW). With the logarithmic utility function, one cannot use 

the Taylor approximation until after differentiation, however.  If the approximation is 

applied before differentiation, concavity (and risk aversion) is lost.  This problem can, 

with specific numbers, also be done graphically, if desired.  The notion that fines are 

more effective can be contrasted with the criminologist’s view that apprehension of law-

breakers is more effective and some shortcomings of the economic argument (i.e., no 

disutility from apprehension) might be mentioned. 

 

18.7 This is another illustration of diversification. Also shows how insurance provisions can 

affect diversification. 

 

18.8 This problem stresses the close connection between the relative risk-aversion parameter 

and the elasticity of substitution. It is a good problem for building an intuitive 
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understanding of risk-aversion in the state preference model.  Part d uses the CRRA 

utility function to examine the “equity-premium puzzle.” 

 

18.9 Provides an illustration of investment theory in the state preference framework. 

 

18.10 A continuation of Problem 18.9 that analyzes the effect of taxation on risk-taking 

behavior. 

 

Solutions 
 

18.1 p must be large enough so that expected utility with bet is greater than or equal to that 

without bet:  p ln(1,100,000) + (1 – p)ln(900,000) > ln(1,000,000)13.9108p +  

13.7102(1 –  p) > 13.8155,  .2006p > .1053  p > .525 

 

18.2  

 

 This would be limited by the individual’s resources: he or she could run out of wealth 

since unfair bets are continually being accepted. 

 

18.3 a.  

Strategy One Outcome Probability 

 12 Eggs .5 

 0 Eggs .5 

Expected Value =  .512 + .50 = 6 

Strategy Two Outcome Probability 

 12 Eggs .25 

 6 Eggs .5 

 0 Eggs .25 

Expected Value     = .25 12 + .5  6 + .25 0 

 = 3 + 3 = 6 
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 b.  

 

 

18.4 a. E(L) = .50(10,000) = $5,000, so 

  Wealth = $15,000 with insurance, $10,000 or $20,000 without. 

 b. Cost of policy is .5(5000) = 2500.  Hence, wealth is 17,500 with no illness, 12,500 

with the illness. 

   

 

18.5 a. E(U) = .75ln(10,000) + .25ln(9,000) = 9.1840 

 b. E(U) = ln(9,750) = 9.1850 

  Insurance is preferable. 

 c. ln(10,000 –  p) = 9.1840 

  10,000 – p = e
9.1840

 = 9,740 

  p = 260 

 

18.6 Expected utility = pU(W –  f) + (1 – p)U(W). 

 , [ ( ) ( ) ] /U p

U p
       U W  f   U W    p Ue

p U


     


 

 , ( ) /U  f

U f
      p  U   W  f  f Ue

f U


      


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 by Taylor expansion,   

 So, fine is more effective. 

 If U(W) = ln W then Expected Utility = p ln (W –  f) + (1 –  p) ln W. 
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18.7 a. U (wheat) = .5 ln(28,000) + .5 ln(10,000) = 9.7251 

  U (corn)  = .5 ln(19,000) + .5 ln(15,000) = 9.7340 

  Plant corn. 

 b. With half in each 

  YNR = 23,500  YR = 12,500 

  U = .5 ln(23,500) + .5 ln(12,500) = 9.7491 

  Should plant a mixed crop. Diversification yields an increased variance relative to 

corn only, but takes advantage of wheat’s high yield. 

 c. Let α = percent in wheat. 

  U = .5 ln[ (28,000) + (1 – α  )(19,000)] + .5 ln[α (10,000) + (1 – α )(15,000)]  = .5 

ln(19,000 + 9,000α) + .5 ln(15,000 – 5,000α) 

  
4500 2500

0
19,000 9,000 15,000 5,000

dU
     

d       
  

 
 

  45(150 – 50α) = 25(190 + 90α)     α = .444 

  U = .5 ln(22,996) + .5 ln(12,780) = 9.7494. 

  This is a slight improvement over the 50-50 mix. 

 d. If the farmer plants only wheat, 

  YNR = 24,000  YR = 14,000 

  U = .5 ln(24,000) + .5 ln(14,000) = 9.8163 

  so availability of this insurance will cause the farmer to forego diversification. 
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18.8 a. A high value for 1 – R implies a low elasticity of substitution between states of the 

world.  A very risk-averse individual is not willing to make trades away from the 

certainty line except at very favorable terms. 

 b. R = 1 implies the individual is risk-neutral. The elasticity of substitution between 

wealth in various states of the world is infinite. Indifference curves are linear with 

slopes of –1.  If R   , then the individual has an infinite relative risk-aversion 

parameter.  His or her indifference curves are L-shaped implying an unwillingness to 

trade away from the certainty line at any price. 

 c. A rise in 
bp  rotates the budget constraint counterclockwise about the W g  intercept.  

Both substitution and income effects cause Wb  to fall.  There is a substitution effect 

favoring an increase in W g  but an income effect favoring a decline. The substitution 

effect will be larger the larger is the elasticity of substitution between states (the 

smaller is the degree of risk-aversion). 

 d.  

  i.  Need to find R that solves the equation: 

   
RRR WWW )955.0(5.0)055.1(5.0)( 000   

  This yields an approximate value for R of –3, a number consistent with some 

empirical studies. 

  ii.  A 2 percent premium roughly compensates for a 10 percent gamble. 

   That is: 

   
3

0

3

0

3

0 )12.1()92(.)(   WWW . 

  The “puzzle” is that the premium rate of return provided by equities seems to be 

much higher than this. 

 

18.9 a.  See graph.      

  Risk free option is R, risk option is R'. 

 b. Locus RR' represents mixed portfolios. 

 c. Risk-aversion as represented by curvature of indifference curves will determine 

equilibrium in RR' (say E). 
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 d. With constant relative risk-aversion, indifference curve map is homothetic so locus of 

optimal points for changing values of W will be along OE. 

18.10 a. Because of homothetic indifference map, a wealth tax will cause movement along OE 

(see Problem 18.9). 

 b. A tax on risk-free assets shifts R inward to Rt  (see figure below).  A flatter R  Rt ' 

provides incentives to increase proportion of wealth held in risk assets, especially for 

individuals with lower relative risk-aversion parameters.  Still, as the “note” implies, 

it is important to differentiate between the after tax optimum and the before tax 

choices that yield that optimum.  In the figure below, the no-tax choice is E on RR'.  
* EW  represents the locus of points along which the fraction of wealth held in risky 

assets is constant.  With the constraint R  Rt   choices are even more likely to be to the 

right of E W
*  implying greater investment in risky assets. 

 

 c. With a tax on both assets, budget constraint shifts in a parallel way to R  R tt  .  Even 

in this case (with constant relative risk aversion) the proportion of wealth devoted to 

risky assets will increase since the new optimum will lie along OE whereas a constant 

proportion of risky asset holding lies along E  W O .
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CHAPTER 19 
 

THE ECONOMICS OF INFORMATION  
 

 

The problems in this chapter stress the economic value of information and illustrate some of the 

consequences of imperfect information.  Only a few of the problems involve complex 

calculations or utilize calculus maximization techniques.  Rather, the problems are intended 

primarily to help clarify the conceptual material in the chapter.   

 

 

Comments on Problems 

 

19.1 This problem illustrates the economic value of information and how that value is reduced 

if information is imperfect.  

 

19.2 This is a continuation of Problem 18.5 that illustrates moral hazard and why its existence 

may prompt individuals to forego insurance. 

 

19.3 Another illustration of moral hazard and how it might be controlled through cost-sharing 

provisions in insurance contracts.  

 

19.4 This is an illustration of adverse selection in insurance markets. It can serve as a nice 

introduction to the topic of optimal risk classifications and to some of the economic and 

ethical problems involved in developing such classifications. 

 

19.5 This is a simple illustration of signaling in labor markets. It shows that differential 

signaling costs are essential to maintaining a separating equilibrium. 

 

19.6 An illustration of the economic value of price information. Notice that the utility of 

owning the TV is already incorporated into the function U(Y) so all Molly wants to do is 

minimize the TV’s cost. 

 

19.7 A continuation of Problem 19.6 which uses material from the extensions to calculate the 

optimal number of stores to search. 

 

19.8 A further continuation of Problems 19.6 and 19.7 that involves computation of an optimal 

reservation price. 

 

19.9 This problem illustrates that principal-agent distortions may occur in medical care even 

when the physician is a “perfect” altruist. 

 

19.10 Introduces the notion of “resolution-seeking” behavior. Here the notation is rather 

cumbersome (see the solutions for clarification). 
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Solutions 
 

 

19.1 a. Expected profits with no watering are .5(1,000) + .5(500) = $750. With watering, 

profits are $900 with certainty.  The farmer should water. 

 b. If the farmer knew the weather with certainty, profits would be $1,000 with rain, 

$900 with no rain.  Expected profits are $950.  The farmer would pay up to $50 for 

the information. 

 c. There are four possible outcomes with the following probabilities: 

  Forecast 

Weather 

 Rain No Rain 

Rain 37.5 12.5 

No Rain 12.5 37.5 

  Profits in each case are (assuming farmer follows forecaster’s advice): 

  Forecast 

  Rain No Rain 

Weather 
Rain 1000 900 

No Rain 500 900 

  Expected profits, therefore, are 

  .375(1000) + .125(900) + .125(500) + .375(900) = 887.5. 

  The forecaster’s advice is therefore of negative value to the farmer relative to the 

strategy of planning on no rain. 

 

19.2 Premium is now $300.  If she buys insurance, spending is 9700, utility = ln(9700) = 

9.1799.  This falls short of utility without insurance (9.1840), so here it is better to forego 

insurance in the presence of moral hazard. 

 

19.3 A cost-sharing policy would now cost $1,750. Wealth when sick would be 20,000 – 

1,750 – 3,500 = 14,750.  Wealth when well would be 20,000 – 1,750 = 18,250.  Utility 

from this combination may exceed utility of a certain $15,000. 

 

19.4 a. Premium = (.8)(.5)(1,000) + (.2)(.5)(1,000) = 500 

 b. For blue without insurance 

  E(U) = .8 ln9,000 + .2 ln10,000 = 9.1261. 

  With insurance 
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  E(U) = ln(9,500) = 9.1590. 

  Will buy insurance. 

  For brown without insurance 

  E(U) = .2 ln(9,000) + .8 ln(10,000) = 9.1893. 

  Better off without insurance. 

 c. Since only blue buy insurance, fair premium is 800.  

  Still pays this group to buy insurance. 

  [E(U) = 9.1269] 

  Brown will still opt for no insurance. 

 d. Blue premium = 800    E(U) = 9.1269 

  Brown premium = 200   E(U) = 9.1901 

  So Brown is better off under a policy that allows separate rate setting. 

 

19.5 a. No separating equilibrium is possible since low-ability workers would always opt to 

purchase the educational signal identifying them as high-ability workers providing 

education costs less than $20,000. If education costs more than $20,000, no one 

would buy it. 

 b. A high-ability worker would pay up to $20,000 for a diploma. It must cost a low-

ability worker more than that to provide no incentive for him or her to buy it too. 

 

19.6 a. U (18,000) = 9.7981 

 b. U (18,300) = 9.8147 

 c. Utility of Trip = .5U (18,200) + .5U (17,900) = 9.8009.  So since expected utility 

from the trip exceeds the utility of buying from the known location, she will make the 

trip. 

 

19.7 a. Here 
1

( )  300    400 and ( ) = 0
100

f p    for p f p    otherwise. 

  Cumulative function is  
300

( ) ( )

p

F p    f x dx   
300

3
100 100

|
p

x p
          

 

  For 300 400p    

  F(p) = 0 for P < 300 

  F(p) = 1 for P > 400. 
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  Expected minimum price (see footnote 1 of extension) is 

  
300 400

min 0 300
1 4

100

n

n p
     dp      dpp

 
     
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 
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 b. 
min

n
p  clearly diminishes with n: 

  
2

min
/ 100 ( 1 0)

n
d  dn   n    p


    

  
32 2

min
/ 200 ( 1 0)

n
    n    pd dn


   . 

 c. Set 
2

min
/ 100( 1 2)

n
  dn  n    dp


    

        
2

( 1 50)n       

         n = 6.07  (i.e., 7 calls) 

  An intuitive analysis is: 

  With n = 6  
min

316.67
n

  p   

  With n = 7  
min

  314.29
n

p   

  With n = 8  
min

312.50
n

  p   

  So should stop at the 7th call. 

 

19.8 According to the Extensions, the searcher should choose 
Rp  so that 

0
2 ( )Rp

C      F  p   dp    

      

2

300300
3 50 3 |

100 100
R Rp pp p

       dp      
   

       
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2

50 3 :    320  .
100

R

R

p
      so p

 
   

 
 

 

19.9 Patient utility maximization requires:  1 2

c c

mU U p . Doctor Optimization requires: 

1 2 1 2[ ] 0d d c c

m mU p U U p U   .  If 2 1dU   (which I interpret as meaning that the physician is 

a perfect altruist), this requires 1 2 1( )c c d

mp U U U  . Relative to patient maximization, 
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this requires a smaller 1

cU .  Hence, the doctor chooses more medical care than would a 

fully informed consumer. 

 

19.10 a. Expected value of utility = .5(10) + .5(5) = 7.5 regardless of when coin is flipped. 

 b. If coin is flipped before day 1, there is no uncertainty at day 2.  From the perspective 

of day 1, utility = 10 or 5 with p = 0.5 so E1(U) = .5(10) + .5(5) = 7.5. 

  If the coin is flipped at day two, E2(U) = 7.5 and E1[E2(U)]
1
 = 7.5 so date of flip does 

not matter. 

 c. With  α = 2, flipping at day 1 yields 100 or 25 with p = 0.5 

  E1(U) = .5(100) + .5(25) = 62.5. 

  Flipping at day 2 yields 

  E2(U) = .5(10) + .5(5) = 7.5 and [E2(U)]
2
 = 56.25 < E1(U). 

  Hence the individual prefers flipping at day 1. 

 d. With α = .5, flipping at day 1 yields utility of 5.0 = p with 5 or 10  

  E1(U) = 2.70. 

  Flipping at day 2 yields E2(U) = .5(10) + .5(5) = 7.5 and [E2(U)]
.5

 = 2.74. Hence, the 

individual prefers flipping at day 2. 

 e. Utility is concave in c2, but expected utility is linear in utility outcomes if α = 1.  

Timing doesn't matter. 

  With 1  , timing matters because utility values themselves are exponentiated with a 

day-1 flip, whereas expected utility values are exponentiated with a day-2 flip.  

Values of α > 1 favor a day-1 flip; values of α < 1 favor a day-2 flip. 
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CHAPTER 20 
 

EXTERNALITIES AND PUBLIC GOODS 
 

 

The problems in this chapter illustrate how externalities in consumption or production can affect 

the optimal allocation of resources and, in some cases, describe the remedial action that may be 

appropriate. Many of the problems have specific, numerical solutions, but a few (20.4 and 20.5) 

are essay-type questions that require extended discussion and, perhaps, some independent 

research. Because the problems in the chapter are intended to be illustrative of the basic concepts 

introduced, many of the simpler ones may not do full justice to the specific situation being 

described. One particular conceptual shortcoming that characterizes most of the problems is that 

they do not incorporate any behavioral theory of government—that is, they implicitly assume 

that governments will undertake the efficient solution (i.e., a Pigovian tax) when it is called for.  

In discussion, students might be asked whether that is a reasonable assumption and how the 

theory might be modified to take actual government incentives into account. Some of the 

material in Chapter 20 might serve as additional background to such a discussion. 

 

 

Comments on Problems 

 

20.1 An example of a Pigovian tax on output. Instructors may wish to supplement this with a 

discussion of alternative ways to bring about the socially optimal reduction in output. 

 

20.2 A simple example of the externalities involved in the use of a common resource. The 

allocational problem arises because average (rather than marginal) productivities are 

equated on the two lakes. Although an optimal taxation approach is examined in the 

problem, students might be asked to investigate whether private ownership of Lake X 

would achieve the same result. 

 

20.3 Another example of externalities inherent in a common resource. This question poses a 

nice introduction to discussing ―compulsory unitization‖ rules for oil fields and, more 

generally, for discussing issues in the market’s allocation of energy resources. 

 

20.4 This is a descriptive problem involving externalities, now in relation to product liability 

law. For a fairly complete analysis of many of the legal issues posed here, see S. Shavell, 

Economic Analysis of Accident Law. 

 

20.5 This is another discussion question that asks students to think about the relationship 

between various types of externalities and the choice of contract type. The Cheung article 

on sharecropping listed in the Suggested Readings for Chapter 20 provides a useful 

analysis of some of the issues involved in this question. 

 

20.6 An illustration of the second-best principle to the externality issue. Shows that the ability 

of a Pigovian tax to improve matters depends on the specific way in which the market is 

organized. 
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20.7 An algebraic public goods problem in which students are asked to sum demand curves 

vertically rather than horizontally.   

 

20.8 An algebraic example of the efficiency conditions that must hold when there is more than 

one public good in an economy. 

 

20.9 Another public goods problem. In this case, the formulation is more general than in 

Problem 20.7 because there are assumed to be two goods and many (identical) 

individuals. The problem is fairly easy if students begin by developing an expression for 

the RPT and for the MRS for each individual and then apply Equation 20.40. 

 

20.10 This problem asks students to generalize the discussions of Nash and Lindahl equilibria 

in public goods demand to n individuals. In general, inefficiencies are greater with n 

individuals than with only two. 

 

 

Solutions 
 

20.1 a. MC = .4q  p = $20 

  Set p = MC  20 = .4q  q = 50. 

 b. SMC = .5q 

  Set p = SMC 20 = .5q  q = 40. 

  At the optimal production level of q = 40, the marginal cost of production is 

 MC = .4q = .4(40) = 16, so the excise tax t = 20 –16 = $4. 

 c.  

 

20.2 a. 2  10  - 0.5       5x y
x x yl l lF F         

  First, show how total catch depends on the allocation of labor. 

  Lx + ly = 20          ly = 20 – lx 

  T x y  =  + F F F  

  210 .5 5 (20 )T
x x x         l l lF      

   25 0.5 100 .x x     l l    
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  Equating the average catch on each lake gives 

  :10 0.5 5 10, 10
yx

x x y

x y

FF
                  l l l

ll
      

  F
T
 = 50 – 0.5(100) + 100 = 100. 

 b. max 2: 5 0.5 100T
x x       l lF    

  5 0 5, 15, 112.5
T

T
x x y

x

dF
             l    l l F

dl
       

 c. F
x
case 1 = 50     average catch = 50/10 = 5 

  F
x
case 2 = 37.5   average catch = 37.5/5 = 7.5 

  License fee on Lake X should be  = 2.5 

 d. The arrival of a new fisher on Lake X imposes an externality on the fishers already 

there in terms of a reduced average catch. Lake X is treated as common property here.  

If the lake were private property, its owner would choose LX to maximize the total 

catch less the opportunity cost of each fisher (the 5 fish he/she can catch on Lake Y).   

So the problem is to maximize F
X
 – 5lx which yields lx = 5 as in the optimal allocation 

case. 

 

20.3 AC = MC = 1000/well 

 a. Produce where revenue/well = 1000 = 10q = 5000 –10n.  n = 400.  There is an 

externality here because drilling another well reduces output in all wells. 

 b. Produce where MVP = MC of well.  Total value:   

  5000n –10n
2
.  MVP = 5000 –20n = 1000. n = 200. 

  Let tax = x.  Want revenue/well –x = 1000 when n = 200.  At n = 200, average 

revenue/well = 3000. 

  So charge x = 2000. 

 

20.4 Under caveat emptor, buyers would assume all losses.  The demand curve under such a 

situation might be given by D.  Firms (which assume no liability) might have a horizontal 

long-run supply curve of S.  A change in liability assignment would shift both supply and 

demand curves.  Under caveat vendor, losses (of amount L) would now be incurred by 

firms, thereby shifting the long-run supply curve to S'. 
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 Individuals now no longer have to pay these losses and their demand curve will shift 

upward by L to D'.  In this example, then, market price rises from P1 to P2 (although the 

real cost of owning the good has not changed), and the level of production stays constant 

at  Q
*
. Only if there were major information costs associated with either the caveat 

emptor or caveat vendor positions might the two give different allocations. It is also 

possible that L may be a function of liability assignment (the moral hazard problem), and 

this would also cause the equilibria to differ. 

 

20.5 There is considerable literature on this question, and a good answer should only be 

expected to indicate some of the more important issues. Aspects of what might be 

mentioned include 

 A. specific services provided by landlords and tenants under the contracts. 

 B. the risks inherent in various types of contracts, who bears these risks, and how is that 

likely to affect demand or supply decisions. 

 C. costs of gathering information before the contract is concluded, and of  enforcing the 

contract’s provisions. 

 D. the incentives provided for tenant and landlord behavior under the contracts (for 

example, the incentives to make investments in new production techniques or to alter 

labor supply decisions). 

 E. ―noneconomic‖ aspects of the contracts such as components of landlords’ utility 

functions or historical property relationships. 
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20.6  

 In the diagram the untaxed monopoly produces QM at a price of PM.  If the  marginal 

social cost is given by MC', QM is, in fact, the optimal production level.  A per-unit tax of 

t would cause the monopoly to produce output QR, which is below the optimal level.  

Since a tax will always cause such an output restriction, the tax may improve matters 

only if the optimal output is less than QM, and even then, in many cases it will not. 

 

20.7 a. To find the total demand for mosquito control, demand curves must be summed 

vertically.  Letting Q be the total quantity of mosquito control (which is equally 

consumed by the two individuals), the individuals’ marginal valuations are 

  P = 100 – Q (for a) 

  P = 200 – Q (for b). 

  Hence, the total willingness to pay is given by 300 – 2Q. 

  Setting this equal to MC (= 120) yields optimal Q = 90. 

 b. In the private market, price will equal MC = 120.  At this price (a) will demand 0, (b) 

will demand 80.  Hence, output will be less than optimal. 

 c. A tax price of 10 for (a) and 110 for (b) will result in each individual demanding  

Q = 90 and tax collections will exactly cover the per-unit cost of mosquito control. 

 

20.8 a. For each public good (yi, i = 1, 2) the RPT of the good for the private good (a) should 

equal the sum of individuals' MRS's for the goods: 

  
1

( for  )      (  for ).
n

i i
RPT   x MRS xy y   

 b. For the two public goods (y1 and y2), the RPT between the goods should equal the 

ratio of the sums of the marginal utilities for each public good: 

  
1

1 2

2

    ( )

( for  )   .
    ( )

i

n

i

n

yU

RPT  y y
M yU







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20.9 a. The solution here requires some assumption about how individuals form their 

expectations about what will be purchased by others.  If each assumes he or she can 

be a free rider, y will be zero as will be each person’s utility. 

 b. Taking total differential of production possibility frontier. 

  2x dx + 200y dy = 0 gives 

  
200 100

2

dx y y
RPT       

dy x x
     

  Individual 

0.5
/100

0.5

i

y i
i

x

i

x

y x MU x
        MRS

y yyMU
 

x

     

  For efficiency require sum of MRS should equal RPT 

  
100

Hence,       = 10   .i

i

x x y
   =   .     x yMRS

y y x
  

  Using production possibility frontier yields 

  200y
2
 = 5000 

         y = 5 

             x = 50        x/100 = 0.5 

  Utility =  2.5 . 

  Ratio of per-unit tax share of y to the market price of x should be equal to the 

1
.

10

ix
MRS      

y
   

20.10 a.  The condition for efficiency is that RPTMRS
n

i 
1

.  The fact that the MRS’s are  

summed captures the assumption that each person consumes the same amount of the 

nonexclusive public good.  The fact that the RPT is independent of the level of 

consumers shows that the production of the good is nonrival. 

 b. As in Equation 20.41, under a Nash equilibrium each person would opt for a share 

under which MRSi = RPT  implies a much lower level of public good production than 

is efficient. 

 c.  Lindahl Equilibrium requires that / and 1.0i i iMRS RPT   .  This would 

seem to pose even greater informational difficulties than in the two-person case. 
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CHAPTER 21 
 
POLITICAL ECONOMICS 
 

 

The problems in this final chapter are of two general types. First are four problems in traditional 

welfare economics (Problems 21.1–21.3 and 21.5) that illustrate various issues that arise in 

comparing utility among individuals.  These are rather similar to the problems in Chapter 12.  

The other six problems in the chapter concern public choice theory.   

 

 

Comments on Problems 
 

21.1 A problem utilizing two very simple utility functions to show how none of several 

differing welfare criteria seems necessarily superior to all the others.  This clearly 

illustrates the basic dilemma of traditional welfare economics. 

 

21.2 This problem examines the Scitovsky bribe criterion for judging welfare improvements.  

Although the criterion as a general principle is not widely accepted, the notion of 

“bribes” in public policy discussions is still quite prevalent (for example, in connection 

with trade adjustment policies). 

 

21.3 Shows how to integrate production into the utility possibility frontier construction. In the 

example given here, the frontiers are concentric ellipses so the Pareto criterion suggests 

choosing the one that is furthest from the origin.  The choice is, however, ambiguous if 

the frontiers intersect.  

 

21.4 Illustrates the “irrelevant alternative” assumption in the Arrow theorem. 

 

21.5 A further examination of welfare criteria that focuses on Rawls’ uncertainty issues.  

Shows that the results derived from a Rawls’ “initial position” depend crucially on the 

strategies individuals adopt in risky situations. 

 

21.6 Further examination of the Arrow theorem and of how contradictions can arise in fairly 

simple situations. 

 

21.7 A simple problem focusing on an individual’s choice for the parameters of an 

unemployment insurance policy.  The problem would need to be generalized to provide 

testable implications about voting (see the Persson and Tabellini reference). 

 

21.8 A problem in rent seeking.  The main point is to differentiate between the allocational 

harm of monopoly itself and the transfer nature of rent-seeking expenditures. 

 

21.9 A discussion question concerning voter participation. 
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21.10 An alternative specification for probabilistic voting that also yields desirable normative 

consequences. 

 

 

Solutions 
 

 

21.1 200 pounds          1 21 2

1
 =       =  f fU U

2
 

 a. 100 pounds each          U1 = 10, U2 = 5 

 b. 
1 2 1 2

1 1

2 4
           f f f f   

   f1 = 40             f2 = 160 

 c. 1 2 1 1

1
200

2
         f fU U     

  
0.5 0.5

1 1

1 1
(200 )

2 4
      f f

 
   

  f1 = 160, f2 = 40 

 d. 2 5U  , best choice is U2 = 5 

  f2 = 100, f1 = 100. 

 e. 
技 技0.5 0.5

1 2 1 2 1 1

1 1
(200 )

2 2
W               f f f fU U      

  
? / 4 3/ 4  

1 1 1 1

1

1 1 1 1
[ (200 ] (200 0) )

4 42 2

 W
                   f f f f

 f

 
     


 

  
? /4 3/4  

1 1 1 1
(200 (200) )           f f f f

 
    

  f1 = 200 – f1     f1 = 100, f2 = 100. 

 

21.2 If compensation is not actually made, the bribe criterion amounts to assuming that total 

dollars and total utility are commensurable across individuals.  As an example, consider: 

 Income in State A Income in State B 

Individual 1 100,000   110,000 

Individual 2  5,000   0 

 State B is “superior” to State A in that Individual 1 could bribe Individual 2. But, in the 

absence of compensation actually being made, it is hard to argue that State B is better. 
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21.3 Pareto efficiency requires   MRS1 = MRS2 

 
1 2 1

1 2 1

.
y  y y y

      
x  x x x


 


 

 Hence, all efficient allocations have  

 11
  y       xy x    

 22
(1 ) (1 ) .       y           x  y x      

 
22 2 2

1 2 (1 )   xy           xyU U     

 
2 22 2 2

1 2 1 1 2 2( 2 2( )(1 ) (1) )              xy     xy       xy  xyU U U U U U              

 a. If 10, 160y   x     

  Utility Frontier is (U1 + U2)
2
 = 1600. 

 b. 30 120y       x     

  (U1 + U2)
2
 = 3600 

 c. Maximize subject to   2   180XY X Y   yields 90 45x       y     

  (U1 + U2)
2
 = 4050. 

 d. In this problem, the utility possibility frontiers do not intersect, so there is no 

ambiguity  in using the Pareto criterion. If they did intersect, however, one would 

want to use an outer envelope of the frontiers. 

 

21.4 7 individuals with states A, B, C.  Votes are 

A B C 

3 2 2 

 If C is not available, let both C votes go to B.   

A B 

3 4 

 This example is quite reasonable: it implies that Arrow’s axiom is rather restrictive. 

 

21.5 a. D 

 b. E, E(U) = .5(30) + .5(84) = 57 

 c. E(U) = .6(L) + .4(H) 

  EUA = 50, EUB = 52, EUC = 48.6, EUD = 51.5, EUE = 50. 

   So choose B. 
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 d. max E(U) – | U  U| 21  

  values:  A:  50 – 0 = 50 C:  49.5 – 9 = 40.5        E:  57 – 54 = 3 

               B:  55 – 30 = 26 D:  51.75 – 2.5 = 49.26 

  So  choose A. 

 e. It shows that a variety of different choices might be made depending on the criteria 

being used. 

 

21.6 Suppose preferences are as follows: 

 Individual 

 1 2 3 

Preference 

C A B 

A B C 

B C A 

 

 a. Under majority rule, APB (where P means “is socially preferred to”), BPC, but CPA.  

Hence, the transivity axiom is violated. 

 b. Suppose Individual 3 is very averse to A and reaches an agreement with Individual 1 

to vote for C over B if Individual 1 will vote for B over A.  Now, majority rule results 

in CPA, CPB, and BPA.  The final preference violates the nondictatorship assumption 

since B is preferred to A only by Individual 3. 

 c. With point voting, each option would get six votes, so AIBIC.  But that result can be 

easily overturned by introducing an “irrelevant alternative” (D). 

 

21.7 a.   So long as this utility function exhibits diminishing marginal utility of income, this 

person will opt for parameters that yield y1 = y2.  Here that requires w(1 – t) = b.  

Inserting this into the governmental budget constraint produces uw(1 – t) = tw(1 – u) 

which requires u = t. 

 b. A change in u will change the tax rate by an identical amount. 

 c. The solutions in parts a and b are independent of the risk aversion parameter, . 

21.8 a. Since p = –q/100 + 2, MR = –q/50 + 2 

  MR = MC when q = 75, p = 1.25, π = 56.25. 

  The firm would be willing to pay up to this amount to obtain the concession 

(assuming that competitive results would otherwise obtain). 

 b. The bribes are a transfer, not a welfare cost. 

 c. The welfare loss is the deadweight loss from monopolization of this market, which 

here amounts to 28.125. 



 118 

 

21.9 An essay on this topic would stress that free riding may be a major problem in elections 

where voters perceive that the marginal gain from voting may be quite small.  If such 

voters are systematically different from other voters, candidates will recognize this fact 

and tailor their platforms to those who vote rather than to the entire electorate.  The effect 

would be ameliorated by the extent to which platforms can affect voter participation itself. 

 

21.10 Candidate 1’s problem is to chose θ1, to maximize 

 1 2

1 1

( ( ) / ( )
n n

i i i i ii

i i

           f U U  
 

   subject to 1

1

0
n

i

i

   


 . 

 The first order conditions for a maximum are
' ' *

2/ ( ) for all   1 . . .i ii if  U        i nU    .  

Assuming  
'

if  is the same for all individuals, this yields 
' *

2/ ( ) for   1 . . .  .i iiU       k  i nU     

 In words, the candidate should equate the ratio of the marginal utilities of any two voters 
' '( / )i jU  U   to the ratio of their total utilities ( / )i j U U .  Since each candidate follows this 

strategy, they will adopt the strategies that would maximize the Nash Function, SWF. 

 


	ch02
	ch03
	ch04
	ch05
	ch06
	ch07
	ch08
	ch09
	ch10
	ch11
	ch12
	ch13
	ch14
	ch15
	ch16
	ch17
	ch18
	ch19
	ch20
	ch21

